
 Page 1 of 29

Web Services Policy Attachment (WS-
PolicyAttachment)
March 2006

Version 1.2

Authors

Siddharth Bajaj, VeriSign
Don Box, Microsoft
Dave Chappell, Sonic Software
Francisco Curbera, IBM
Glen Daniels, Sonic Software
Phillip Hallam-Baker, VeriSign
Maryann Hondo, IBM
Chris Kaler, Microsoft
Hiroshi Maruyama, IBM
Anthony Nadalin, IBM
David Orchard, BEA Systems
Hemma Prafullchandra, VeriSign
Claus von Riegen, SAP

Daniel Roth, Microsoft
Jeffrey Schlimmer, Microsoft
Chris Sharp (editor), IBM
John Shewchuk, Microsoft

Asir Vedamuthu, Microsoft

Ümit Yalçınalp, SAP

Copyright Notice
(c) 2001-2006 BEA Systems Inc., International Business Machines Corporation,
Microsoft Corporation, Inc., SAP AG, Sonic Software, and VeriSign Inc. All rights
reserved.

Permission to copy and display the WS-PolicyAttachment Specification (the
"Specification", which includes WSDL and schema documents), in any medium without
fee or royalty is hereby granted, provided that you include the following on ALL copies of
the WS-PolicyAttachment Specification, that you make:

1. A link or URL to the WS-PolicyAttachment Specification at one of the Authors’
websites

2. The copyright notice as shown in the WS-PolicyAttachment Specification.

BEA Systems, IBM, Microsoft, SAP, Sonic Software, and VeriSign (collectively, the
"Authors") each agree to grant you a license, under royalty-free and otherwise
reasonable, non-discriminatory terms and conditions, to their respective essential patent
claims that they deem necessary to implement the WS-PolicyAttachment Specification.

THE WS-POLICYATTACHMENT SPECIFICATION IS PROVIDED "AS IS," AND THE
AUTHORS MAKE NO REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR
A PARTICULAR PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE

 Page 2 of 29

WS-POLICYATTACHMENT SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT
THE IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY
PATENTS, COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS.

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR
DISTRIBUTION OF THE WS-POLICYATTACHMENT SPECIFICATION.

The name and trademarks of the Authors may NOT be used in any manner, including
advertising or publicity pertaining to the WS-PolicyAttachment Specification or its
contents without specific, written prior permission. Title to copyright in the WS-
PolicyAttachment Specification will at all times remain with the Authors.

No other rights are granted by implication, estoppel or otherwise.

Abstract
The Web services Policy Framework (WS-Policy) specification defines an abstract model
and an XML-based expression grammar for policies. This specification, Web Services
Policy Attachment (WS-PolicyAttachment) defines two general-purpose mechanisms for
associating such policies with the subjects to which they apply. This specification also
defines how these general-purpose mechanisms may be used to associate WS-Policy
with WSDL and UDDI descriptions.

Composable Architecture
By using the XML, WSDL, and SOAP extensibility models, the WS* specifications are
designed to be composed with each other to provide a rich Web services environment.
WS-PolicyAttachment by itself does not provide a negotiation solution for Web services.
WS-PolicyAttachment is a building block that is used in conjunction with other Web
service and application-specific protocols to accommodate a wide variety of Policy
exchange models.

Status
This WS-PolicyAttachment specification is a publicly released draft and is provided for
review and evaluation only. BEA Systems, IBM, Microsoft, SAP, Sonic Software, and
VeriSign hope to solicit your contributions and suggestions in the near future. BEA
Systems, IBM, Microsoft, SAP, Sonic Software, and VeriSign make no warrantees or
representations regarding the specifications in any manner whatsoever.

Table of Contents
1. Introduction
2. Notations and Terminology

2.1 Notational Conventions
2.2 Namespaces
2.3 Terminology
2.4 Example WS-Policy Expressions

3. Policy Attachment
3.1 Effective Policy
3.2 Policy Attachment Mechanisms
3.3 XML Element Attachment

 Page 3 of 29

3.4 External Policy Attachment
4. Attaching Policies Using WSDL 1.1

4.1 Calculating Effective Policy in WSDL 1.1
4.1.1 Service Policy Subject
4.1.2 Endpoint Policy Subject
4.1.3 Operation Policy Subject
4.1.4 Message Policy Subject
4.1.5 Example
4.2 External Attachment to Deployed Endpoints

5. Attaching Policies Using UDDI
5.1 Calculating Effective Policy and Element Policy in UDDI
5.1.1 Service Provider Policy Subject
5.1.2 Service Policy Subject
5.1.3 Endpoint Policy Subject
5.2 Referencing Remote Policy Expressions
5.3 Registering Reusable Policy Expressions
5.4 Registering Policies in UDDI Version 3

6. Security Considerations
7. Acknowledgements
8. References
Appendix A: UDDI tModel Definitions

A.1 Remote Policy Reference Category System
A.2 WS-Policy Types Category System
A.3 Local Policy Reference Category System

1. Introduction
The WS-Policy specification defines an abstract model and an XML-based grammar for
policies. This specification, Web Services Policy Attachment (WS-PolicyAttachment),
defines two general-purpose mechanisms for associating policies with the subjects to
which they apply; the policies may be defined as part of existing metadata about the
subject or the policies may be defined independently and associated through an external
binding to the subject.

To enable WS-Policy to be used with existing Web service technologies, this specification
describes the use of these general-purpose mechanisms with WSDL 1.1 [WSDL 1.1] and
UDDI [UDDI API 2.0, UDDI Data Structure 2.0, UDDI 3.0]. Specifically, this specification
defines the following:

• How to reference policies from WSDL definitions.

• How to associate policies with deployed Web service endpoints.

• How to associate policies with UDDI entities.

 Page 4 of 29

2. Notations and Terminology
This section specifies the notations, namespaces, and terminology used in this
specification.

2.1 Notational Conventions
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be
interpreted as described in RFC 2119 [RFC 2119].

WS-PolicyAttachment is designed to work with the general Web services framework
including WSDL service descriptions [WSDL 1.1], UDDI service registrations [UDDI API
2.0, UDDI Data Structure 2.0, UDDI 3.0] and SOAP message structure and message
processing model [SOAP 1.1, SOAP 1.2]. The general approaches described in this
specification should be applicable to any version of SOAP, WSDL, or UDDI.

This specification uses the following syntax within normative outlines:

• The syntax appears as an XML instance, but values in italics indicate data types
instead of literal values.

• Characters are appended to elements and attributes to indicate cardinality:

• "?" (0 or 1)

• "*" (0 or more)

• "+" (1 or more)

• The character "|" is used to indicate a choice between alternatives.

• The characters "(" and ")" are used to indicate that contained items are to be treated
as a group with respect to cardinality or choice.

• The characters "[" and "]" are used to call out references and property names.

• XML namespace prefixes (see Table 1) are used to indicate the namespace of the
element or attribute being defined.

Normative text within this specification takes precedence over normative outlines, which
in turn take precedence over the XML Schema [XML Schema] descriptions.

2.2 XML Namespaces
The XML namespace URI that MUST be used by implementations of this specification is:

http://schemas.xmlsoap.org/ws/2004/09/policy

A normative copy of the XML Schema [XML Schema Part 1] for WS-PolicyAttachment
constructs may be retrieved by resolving this URI:
http://schemas.xmlsoap.org/ws/2004/09/policy/ws-policy.xsd.

Table 1 lists XML namespaces that are used in this specification. The choice of any
namespace prefix is arbitrary and not semantically significant.

Table 1: Prefixes and XML Namespaces used in this specification.

Prefix XML Namespace Specification

rmp http://schemas.xmlsoap.org/ws/2005/02/rm/policy [WS-RM Policy]

sp http://schemas.xmlsoap.org/ws/2005/07/securitypolicy [WS-
SecurityPolicy]

 Page 5 of 29

wsa http://schemas.xmlsoap.org/ws/2004/08/addressing [WS-
Addressing]

wsdl http://schemas.xmlsoap.org/wsdl/ [WSDL 1.1]

wsoap12 http://schemas.xmlsoap.org/wsdl/soap12/ [WSDL 1.1
Binding for
SOAP 1.2]

wsp http://schemas.xmlsoap.org/ws/2004/09/policy This
specification

wsse http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-secext-1.0.xsd

[WS-Security
2004]

wsu http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-wssecurity-utility-1.0.xsd

[WS-Security
2004]

xs http://www.w3.org/2001/XMLSchema [XML Schema
Part 1]

In this document reference is made to the wsu:Id attribute in a utility schema
(http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd).
The wsu:Id attribute was added to the utility schema with the intent that other
specifications requiring such an Id could reference it (as is done here).

2.3 Terminology
We introduce the following terms that are used throughout this document:

Policy – A Policy is a collection of Policy Alternatives.

Policy Alternative – A Policy Alternative is a collection of Policy Assertions.

Policy Assertion – A Policy Assertion represents an individual requirement, capability,
or other property of a behaviour.

Policy Expression – A Policy Expression is an XML Infoset [XML Infoset] representation
of a Policy.

Policy Subject – A Policy Subject is an entity (e.g., an endpoint, message, resource,
interaction) with which a Policy can be associated.

Policy Scope – A Policy Scope is the collection of Policy Subjects to which a Policy may
apply.

Policy Attachment – A Policy Attachment is a mechanism for associating Policy with
one or more Policy Scopes.

Effective Policy – An Effective Policy, for a given Policy Subject, is the resultant
combination of relevant policies. The relevant policies are those attached to Policy
Scopes that contain the Policy Subject.

2.4 Example WS-Policy Expressions
This specification defines several mechanisms for associating policies [WS-Policy] with
various XML Web service entities. For brevity, we define two sample Policy Expressions
that the remainder of this document references.

 Page 6 of 29

The example in Table 2 indicates a Policy for reliable messaging [WS-RM Policy]. The
example in Table 3 is a Policy for securing messages using X509 certificates [WS-
SecurityPolicy].

Table 2: Example RM Policy Expression.

(01) <wsp:Policy

 xmlns:rmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"

 wsu:Id="RmPolicy" >

(02) <rmp:RMAssertion>

(03) <rmp:InactivityTimeout Milliseconds="600000" />

(04) <rmp:BaseRetransmissionInterval Milliseconds="3000" />

(05) <rmp:ExponentialBackoff />

(06) <rmp:AcknowledgementInterval Milliseconds="200" />

(07) </rmp:RMAssertion>

(08) </wsp:Policy>

Table 3: Example X509 Security Policy Expression.

(01) <wsp:Policy

 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"

 wsu:Id="X509EndpointPolicy" >

(02) <sp:AsymmetricBinding>

(03) <wsp:Policy>

(04) <sp:RecipientToken>

(05) <wsp:Policy>

(06) <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/Incl

udeToken/Never" >

(07) <wsp:Policy>

(08) <sp:WssX509V3Token10 />

(09) </wsp:Policy>

(10) </sp:X509Token>

(11) </wsp:Policy>

(12) </sp:RecipientToken>

 Page 7 of 29

(13) <sp:InitiatorToken>

(14) <wsp:Policy>

(15) <sp:X509Token

sp:IncludeToken="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy/Incl

udeToken/AlwaysToRecipient" >

(16) <wsp:Policy>

(17) <sp:WssX509V3Token10 />

(18) </wsp:Policy>

(19) </sp:X509Token>

(20) </wsp:Policy>

(21) </sp:InitiatorToken>

(22) <sp:AlgorithmSuite>

(23) <wsp:Policy>

(24) <sp:Basic256Rsa15 />

(25) </wsp:Policy>

(26) </sp:AlgorithmSuite>

(27) <sp:Layout>

(28) <wsp:Policy>

(29) <sp:Lax />

(30) </wsp:Policy>

(31) </sp:Layout>

(32) <sp:IncludeTimestamp />

(33) <sp:OnlySignEntireHeadersAndBody />

(34) </wsp:Policy>

(35) </sp:AsymmetricBinding>

(36) </wsp:Policy>

The document containing both of these policy expressions is assumed to be located at
http://www.fabrikam123.com/policies. Per Section 4.2 Policy Identification of WS-Policy
[WS-Policy], the URIs used for these Policy Expressions in the remainder of this
document are http://www.fabrikam123.com/policies#RmPolicy and
http://www.fabrikam123.com/policies#X509EndpointPolicy, for the examples in Table 2
and Table 3, respectively.

3. Policy Attachment
This section defines two general-purpose mechanisms for associating Policies [WS-
Policy] with one or more Policy Subjects. The first allows XML-based descriptions of
resources (represented as XML elements) to associate Policy as part of their intrinsic
definition. The second allows Policies to be associated with arbitrary Policy Subjects
independently from their definition.

 Page 8 of 29

In addition it defines the processing rules for scenarios where multiple Policies are
attached to a Policy Subject.

3.1 Effective Policy
Policies will often be associated with a particular Policy Subject using multiple Policy
Attachments. For example, there may be attachments at different points in a WSDL
description that apply to a Subject, and other attachments may be made by UDDI and
other mechanisms.

When multiple attachments are made, they must be combined to ascertain the Effective
Policy for a particular Policy Subject. This is done by identifying which Policy Scopes a
particular Subject is in and combining the individual Policies associated with those
Scopes to form an Effective Policy.

This combination can be achieved by a merge operation. This consists of serializing each
Policy as a Policy Expression, replacing their <wsp:Policy> element with a <wsp:All>
element, and placing each as children of a wrapper <wsp:Policy> element. The
resulting Policy Expression is considered to represent the combined Policy of all of the
attachments to that Subject.

Such calculated Policy Expressions have no meaningful URI of their own.

3.2 Policy Attachment Mechanisms
This section defines two general-purpose mechanisms for associating Policies [WS-
Policy] with one or more Policy Subjects. The first allows XML-based descriptions of
resources to associate Policy as part of their intrinsic definition. The second allows
Policies to be associated with arbitrary Policy Subjects independently from their
definition.

3.3 XML Element Attachment
It is often desirable to associate policies with the XML elements describing a subject;
this allows description formats such as WSDL to be easily used with the Policy
Framework (see section 4 for the specific details of WSDL attachment).

The Element Policy is that Policy attached to the Policy Subjects associated with the
element information item that contains it. The precise semantics of how Element Policy
is to be processed once discovered is domain-specific; however, implementations are
likely to follow the precedent specified in the section below on WSDL [WSDL 1.1] and
Policy.

This specification defines a global attribute that allows Policy Expressions to be attached
to an arbitrary XML element. The following is the schema definition for the
wsp:PolicyURIs attribute:

<xs:schema>

 <xs:attribute name="PolicyURIs" type="wsp:tPolicyURIs" />

</xs:schema>

The namespace [XML-NS] URI for this attribute is
http://schemas.xmlsoap.org/ws/2004/09/policy.

The wsp:PolicyURIs attribute contains a white space-separated list of one or more URIs.
When this attribute is used, each of the values identifies a Policy Expression as defined
by [WS-Policy]. If more than one URI is specified, the individual referenced Policies need

 Page 9 of 29

to be merged together to form a single Element Policy Expression. The resultant Policy is
then associated with the element information item's Element Policy property.

Note that the Policy Scope of the attachment is specific to the Policy Attachment
Mechanism using it; accordingly, any Policy Attachment mechanism using this attribute
MUST define the Policy Scope of the attachment.

An example of Element Policy through the use of this global attribute is given below
using the sample policies stated in Section 2.4.

If the Policies referenced by the following XML element

<MyElement wsp:PolicyURIs="

 http://www.fabrikam123.com/policies#RmPolicy

 http://www.fabrikam123.com/policies#X509EndpointPolicy" />

have been processed and merged, it would result in an Element Policy whose XML 1.0
representation is listed in Table 4:

Table 4: Example Merged Policy Expression.

(01) <wsp:Policy

 xmlns:rmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"

 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy" >

(02) <rmp:RMAssertion>

(03) <rmp:InactivityTimeout Milliseconds="600000" />

(04) <rmp:BaseRetransmissionInterval Milliseconds="3000" />

(05) <rmp:ExponentialBackoff />

(06) <rmp:AcknowledgementInterval Milliseconds="200" />

(07) </rmp:RMAssertion>

(08) <sp:AsymmetricBinding>

(09) <wsp:Policy>

(10) <!-- Details omitted for readability -->

(11) <sp:IncludeTimestamp />

(12) <sp:OnlySignEntireHeadersAndBody />

(13) </wsp:Policy>

(14) </sp:AsymmetricBinding>

(15) </wsp:Policy>

Note that the Element Policy has no meaningful URI.

The presence of the wsp:PolicyURIs attribute does not prohibit implementations from
using additional mechanisms for associating Policy Expressions with XML-based
constructs.

Alternatively, rather than using the global attribute, XML elements may use the
wsp:Policy or wsp:PolicyReference elements directly as children, in order to support
Element Policy, and the semantics for this are the same as for the use of the global

 Page 10 of 29

attribute. For example, an alternative way of attaching the policies in the above
example, using child elements, would be as follows:

<MyElement>

 <wsp:PolicyReference

 URI="http://www.fabrikam123.com/policies#RmPolicy" />

 <wsp:PolicyReference

 URI="http://www.fabrikam123.com/policies#X509EndpointPolicy" />

<MyElement/>

3.4 External Policy Attachment
This mechanism allows Policies to be associated with a Policy Subject independent of
that subject's definition and/or representation through the use of a
<wsp:PolicyAttachment> element.

This element has three components: the Policy Scope of the attachment, the Policy
Expressions being bound, and optional security information. The Policy Scope of the
attachment is defined using one or more extensible domain expressions that identify
Policy Subjects, typically using URIs.

Domain expressions identify the domain of the association. That is, the set of Policy
Subjects that will be considered for inclusion in the scope using an extensible domain
expression model. Domain expressions identify Policy Subjects to be included within the
Policy Scope. Domain expressions yield an unordered set of Policy Subjects for
consideration.

For the purposes of attaching Policy to a Policy Subject through this mechanism, any
Policy Expression contained inside of the <wsp:AppliesTo> element MUST NOT be
considered in scope. For example, an Endpoint Reference may be used as a domain
expression, and it may contain Policy Expressions within it, but this Policy Expressions
are not considered in scope with respect to the <wsp:PolicyAttachment> element using
it.

The following is the pseudo-schema for the <wsp:PolicyAttachment> element:

<wsp:PolicyAttachment ... >

 <wsp:AppliesTo>

 <x:DomainExpression/> +

 </wsp:AppliesTo>

 (<wsp:Policy>...</wsp:Policy> |

 <wsp:PolicyReference>...</wsp:PolicyReference>) +

 <wsse:Security>...</wsse:Security> ?

 ...

</wsp:PolicyAttachment>

The following describes the attributes and elements listed in the pseudo-schema outlined
above:

/wsp:PolicyAttachment

 Page 11 of 29

This describes an external Policy Attachment.

/wsp:PolicyAttachment/wsp:AppliesTo

This required element's children describe the Policy Scope.

/wsp:PolicyAttachment/wsp:AppliesTo/{any}

These child elements MUST specify and/or refine the domain expression(s) that
define the Policy Scope. They MUST NOT contradict the semantics of their root
element; if an element is not recognized, it SHOULD be ignored. Domain expressions
are XML elements that describe Policy Subjects within a Policy Scope. When more
than one domain expression is present, the Policy Scope contains the union of the
Policy Subjects identified by each expression.

This document defines one domain expression syntax; others may be defined in
subsequent specifications.

/wsp:PolicyAttachment/wsp:Policy

This element is a Policy Expression representing a Policy that is attached to the
Policy Subjects within the Policy Scope.

/wsp:PolicyAttachment/wsp:PolicyReference

This element references a Policy Expression to be attached to the Policy Subjects
that are in the Policy Scope. Refer to WS-Policy for additional details.

/wsp:PolicyAttachment/wsse:Security

This optional element allows security information such as signatures to be included.
The syntax of this element is described in WS-Security [WS-Security 2004].

/wsp:PolicyAttachment/@{any}

Additional attributes MAY be specified but MUST NOT contradict the semantics of the
owner element; if an attribute is not recognized, it SHOULD be ignored.

/wsp:PolicyAttachment/{any}

Other child elements for binding constructs MAY be specified but MUST NOT
contradict the semantics of the parent element; if an element is not recognized, it
SHOULD be ignored.

The following example illustrates the use of this mechanism with an EndpointReference
domain expression for a deployed endpoint as defined in WS-Addressing [WS-
Addressing]:

<wsp:PolicyAttachment>

 <wsp:AppliesTo>

 <wsa:EndpointReference xmlns:fabrikam="..." >

 <wsa:Address>http://www.fabrikam123.com/acct</wsa:Address>

 <wsa:PortType>fabrikam:InventoryPortType</wsa:PortType>

 <wsa:ServiceName>fabrikam:InventoryService</wsa:ServiceName>

 </wsa:EndpointReference>

 </wsp:AppliesTo>

 Page 12 of 29

 <wsp:PolicyReference

 URI="http://www.fabrikam123.com/policies#RmPolicy" />

</wsp:PolicyAttachment>

In this example, the Policy Expression at
http://www.fabrikam123.com/policies#RmPolicy applies to all interactions with the
fabrikam:InventoryService at the endpoint http://www.fabrikam123.com/acct.

4. Attaching Policies Using WSDL 1.1
The RECOMMENDED means of associating a Policy with a Policy Subject that has a WSDL
1.1 [WSDL 1.1] description is to attach a reference to the Policy within the WSDL
component corresponding to the target Policy Subject.

WSDL/1.1 disallows the use of extensibility elements on certain elements and the use of
extensibility attributes on others. However, the WS-I Basic Profile 1.1 [BP 1.1] overrules
this restriction and allows element extensibility everywhere. Therefore, the Policy
reference SHOULD be attached using <wsp:PolicyReference> as child element unless it
is absolutely necessary to maintain the original WSDL 1.1 restriction, in which case the
@wsp:PolicyURIs attribute should be used for those restricted cases.

If it is necessary to include the actual Policy Expressions within the WSDL description
itself, it is RECOMMENDED that their <wsp:Policy> elements be included as children of
the <wsdl:definition> element, and referenced using the mechanisms just described.
Alternatively, the Policy Expressions MAY be made available through some other means,
such as WS-MetadataExchange [WS-MetadataExchange].

To ensure that consumers of Policy-annotated WSDL elements are capable of processing
such Policy Attachments, attachments using <wsp:PolicyReference> SHOULD be
marked as a mandatory extension (e.g., with a @wsdl:required="true" attribute).

The rest of this section defines how to interpret the Policy Attachments when they
appear within a WSDL description.

4.1 Calculating Effective Policy in WSDL 1.1
Policy Attachments in WSDL/1.1 can be used to associate Policies with four different
types of Policy Subject, identified as the Service Policy Subject, the Endpoint Policy
Subject, the Operation Policy Subject, and the Message Policy Subject. These subjects
should be considered as nested, due to the hierarchical nature of WSDL.

When attaching a Policy to a WSDL element, a Policy Scope is implied for that
attachment. The Policy Scope only contains the Policy Subject associated with that
element and not those associated with the children of that element. Therefore, it is
RECOMMENDED that each Policy Assertion contained within a WSDL element's Element
Policy should have the correct semantic such that the subject for that assertion is that
WSDL element. For example, assertions that describe behaviours regarding the
manipulation of messages should only be contained within policies attached to WSDL
message elements.

Figure 1 represents how the Effective Policies, with regard to WSDL, are calculated for
each of these Policy Subjects. In the diagram, the dashed boxes represent Policy Scopes
implied by WSDL elements. For a particular Policy Subject, the Effective Policy MUST
merge the Element Policy of each element with a Policy Scope that contains the Policy
Subject.

 Page 13 of 29

For abstract WSDL definitions, the Element Policy is considered an intrinsic part of the
definition and applies to all uses of that definition. In particular, it MUST be merged into
the Effective Policy of every implementation of that abstract WSDL definition.

Policies that are attached to a deployed resource (e.g., services or ports) are only
considered in the Effective Policy of that deployed resource itself.

When attaching policies at different levels of the WSDL hierarchy, care must be taken. A
message exchange with a deployed endpoint MAY contain Effective Policies in all four
subject types simultaneously.

For example, in Fig.1, for a particular input message to a deployed endpoint, there are
four Policy Subjects involved, each with their own Effective Policy. There is an Effective
Policy for the message, as well as an Effective Policy for the parent operation of that
message, an Effective Policy for the deployed endpoint, and the Effective Policy for the
service as a whole. All four Effective Policies are applicable in relation to that specific
input message.

It is RECOMMENDED that, where specific Policy Assertions associated with one Policy
Subject are only compatible with specific Policy Assertions on another Policy Subject in

Service
Policy Subject

Message
Policy Subject

Operation
Policy Subject

Endpoint
Policy Subject

Figure 1. Effective Policy and Policy Scopes in WSDL

wsdl:servicewsdl:service

wsdl:inputwsdl:input

wsdl:operationwsdl:operation

wsdl:bindingwsdl:binding

wsdl:inputwsdl:input

wsdl:operationwsdl:operation

wsdl:portTypewsdl:portType

wsdl:messagewsdl:message

wsdl:portwsdl:port

 Page 14 of 29

the same hierarchical chain, the policies containing these assertions should be attached
within a single WSDL binding hierarchy.

For any given port, the Policy Alternatives for each Policy Subject type SHOULD be
compatible with each of the Policy Alternatives at each of the Policy Subjects parent and
child Policy Subjects, such that choices between Policy Alternatives at each level are
independent of each other.

The rest of this section describes these Policy Subject types, and how the Effective Policy
for each Policy Subject is calculated.

4.1.1 Service Policy Subject
The following WSDL/1.1 element is considered as the Service Policy Subject:

• wsdl:service

This element MAY have Element Policy as per Section 3 of this specification, and if
present MUST be merged into the Effective Policy of the WSDL Service Policy Subject.

Policy attached to the Service Policy Subject applies to behaviors or aspects of the
service as a whole, irrespective of interactions over any particular port. This includes –
but is not limited to – acting as a consumer or a provider of the service.

4.1.2 Endpoint Policy Subject
The following WSDL/1.1 elements collectively describe an endpoint:

• wsdl:port

• wsdl:portType

• wsdl:binding

These elements MAY have Element Policy as per Section 3 of this specification. The
Policy Scope implied by each of these elements contains the Endpoint Policy Subject
representing the deployed endpoint.

Since the wsdl:portType may be used by more than one binding, it is RECOMMENDED
that only policies containing abstract (i.e., binding independent) assertions should be
attached to this type of element.

An Endpoint Policy Subject applies to behaviours associated with an entire endpoint of
the service, irrespective of any message exchange made. This includes – but is not
limited to – aspects of communicating with or instantiating the endpoint.

The Effective Policy for a WSDL Endpoint Policy Subject includes the Element Policy of
the wsdl:port element that defines the endpoint merged with the Element Policy of the
referenced wsdl:binding element and the Element Policy of the referenced
wsdl:portType element that defines the interface of the endpoint.

4.1.3 Operation Policy Subject
The following WSDL/1.1 elements collectively describe an operation:

• wsdl:portType/wsdl:operation

• wsdl:binding/wsdl:operation

These elements MAY have Element Policy as per Section 3 of this specification.

The Policy Scope implied by each of these elements contains the Operation Policy
Subject representing the specific operation of the Endpoint Policy Subject.

 Page 15 of 29

Since the wsdl:portType/wsdl:operation may be used by more than one binding, it is
RECOMMENDED that only policies containing abstract (i.e., binding independent)
assertions should be attached to this type of element.

Policies attached to an Operation Policy Subject affect behaviours associated with a
sequence of message exchanges, as defined by a WSDL operation. This includes – but is
not limited to – initiating the sequence and ending the sequence.

The Effective Policy for a WSDL Operation Policy Subject is calculated in relation to a
specific port, and includes the Element Policy of the wsdl:portType/wsdl:operation
element that defines the operation merged with that of the corresponding
wsdl:binding/wsdl:operation element.

4.1.4 Message Policy Subject
The following WSDL/1.1 elements are used to describe messages:

• wsdl:message

• wsdl:portType/wsdl:operation/wsdl:input

• wsdl:portType/wsdl:operation/wsdl:output

• wsdl:portType/wsdl:operation/wsdl:fault

• wsdl:binding/wsdl:operation/wsdl:input

• wsdl:binding/wsdl:operation/wsdl:output

• wsdl:binding/wsdl:operation/wsdl:fault

These elements MAY have Element Policy as per Section 3 of this specification.

The Policy Scope implied by these elements contains the Message Policy Subject
representing the specific input, output, or fault message in relation to the Operation
Policy Subject.

Policy attached to a Message Policy Subject pertains to behaviours associated with a
particular message. This includes – but is not limited to – sending and receiving the
message.

The Effective Policy for a specific WSDL message (i.e., input, output, or fault message) is
calculated in relation to a specific port, and includes the Element Policy of the
wsdl:message element that defines the message's type merged with the Element Policy
of the wsdl:binding and wsdl:portType message definitions that describe that
message.

For example, the Effective Policy of a specific input message for a specific port would be
the merge of the wsdl:message element defining the message type, the
wsdl:portType/wsdl:operation/wsdl:input element, and the corresponding
wsdl:binding/wsdl:operation/wsdl:input element for that message.

Since a wsdl:message may be used by more than one wsdl:portType, it is
RECOMMENDED that only policies containing abstract (i.e., binding independent)
assertions should be attached to this type of element.

Since wsdl:input, wsdl:output, and wsdl:fault elements in a
wsdl:portType/wsdl:operation may be used by more than one binding, it is
RECOMMENDED that only policies containing abstract (i.e., binding independent)
assertions should be attached to these types of elements.

Care should be taken when attaching policies to outbound messages as the result may
not be what is expected. For example, expressing a choice on a service's outbound

 Page 16 of 29

message without a mechanism for a requester of that service to communicate its choice
to the service before the outbound message is sent may not result in the desired
behaviours. It is therefore RECOMMENDED that Policy Alternatives on outbound
messages SHOULD be avoided without the use of some form of mutual Policy exchange
between the parties involved.

4.1.5 Example
As an example of the combination of these Policy Subjects and Effective Policy
calculation, consider the WSDL type definition in Table 5 that references policies.

Table 5: Example Policy Attached to WSDL.

(01) <wsdl:definitions name="StockQuote"

 targetNamespace="http://www.fabrikam123.com/stock/binding"

 xmlns:tns="http://www.fabrikam123.com/stock/binding"

 xmlns:fab="http://www.fabrikam123.com/stock"

 xmlns:rmp="http://schemas.xmlsoap.org/ws/2005/02/rm/policy"

 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsoap12="http://schemas.xmlsoap.org/wsdl/soap12/"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd" >

(02) <wsp:Policy wsu:Id="RmPolicy" >

(03) <rmp:RMAssertion>

(04) <rmp:InactivityTimeout Milliseconds="600000" />

(05) <rmp:BaseRetransmissionInterval Milliseconds="3000" />

(06) <rmp:ExponentialBackoff />

(07) <rmp:AcknowledgementInterval Milliseconds="200" />

(08) </rmp:RMAssertion>

(09) </wsp:Policy>

(10) <wsp:Policy wsu:Id="X509EndpointPolicy" >

(11) <sp:AsymmetricBinding>

(12) <wsp:Policy>

 <!-- Details omitted for readability -->

(13) <sp:IncludeTimestamp />

(14) <sp:OnlySignEntireHeadersAndBody />

(15) </wsp:Policy>

 Page 17 of 29

(16) </sp:AsymmetricBinding>

(17) </wsp:Policy>

(18) <wsp:Policy wsu:Id="SecureMessagePolicy" >

(19) <sp:SignedParts>

(20) <sp:Body />

(21) </sp:SignedParts>

(22) <sp:EncryptedParts>

(23) <sp:Body />

(24) </sp:EncryptedParts>

(25) </wsp:Policy>

(26) <wsdl:import namespace="http://www.fabrikam123.com/stock"

 location="http://www.fabrikam123.com/stock/stock.wsdl" />

(27) <wsdl:binding name="StockQuoteSoapBinding" type="fab:Quote" >

(28) <wsoap12:binding style="document"

(29) transport="http://schemas.xmlsoap.org/soap/http" />

(30) <wsp:PolicyReference URI="#RmPolicy" wsdl:required="true" />

(31) <wsp:PolicyReference URI="#X509EndpointPolicy" wsdl:required="true"

/>

(32) <wsdl:operation name="GetLastTradePrice" >

(33) <wsoap12:operation

soapAction="http://www.fabrikam123.com/stock/Quote/GetLastTradePriceReques

t" />

(34) <wsdl:input>

(35) <wsoap12:body use="literal" />

(36) <wsp:PolicyReference URI="#SecureMessagePolicy"

 wsdl:required="true" />

(37) </wsdl:input>

(38) <wsdl:output>

(39) <wsoap12:body use="literal" />

(40) <wsp:PolicyReference URI="#SecureMessagePolicy"

(41) wsdl:required="true" />

(42) </wsdl:output>

(43) </wsdl:operation>

 Page 18 of 29

(44) </wsdl:binding>

(45) </wsdl:definitions>

For endpoints bound to StockQuoteSoapBinding, the Effective Policy of the endpoint is
listed in Table 4 (above), and, for the GetLastTradePrice operation, an additional
message-level Effective Policy is in effect for the input message, whose XML 1.0
representation is listed in Table 6.

Table 6: Example Message Security Policy Expression.

(01) <wsp:Policy

 xmlns:sp="http://schemas.xmlsoap.org/ws/2005/07/securitypolicy"

 xmlns:wsp="http://schemas.xmlsoap.org/ws/2004/09/policy"

 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-

wssecurity-utility-1.0.xsd"

 wsu:Id="SecureMessagePolicy" >

(02) <sp:SignedParts>

(03) <sp:Body />

(04) </sp:SignedParts>

(05) <sp:EncryptedParts>

(06) <sp:Body />

(07) </sp:EncryptedParts>

(08) </wsp:Policy>

4.2 External Attachment to Deployed Endpoints
This section defines a domain expression based on WS-Addressing [WS-Addressing] to
allow the use of the <wsp:PolicyAttachment> mechanism to reference a specific
endpoint of a deployed Web service.

The following schema outline illustrates this extension:

<wsp:PolicyAttachment>

 <wsp:AppliesTo>

 <wsa:EndpointReference>... </wsa:EndpointReference>

 </wsp:AppliesTo>

 (<wsp:Policy>...</wsp:Policy>

 | <wsp:PolicyReference>...</wsp:PolicyReference>

) +

</wsp:PolicyAttachment>

An example of an Endpoint Reference is given at the end of Section 3.4 to illustrate the
extensibility of the <wsp:AppliesTo> element.

Use of this domain expression is equivalent to Policy Attachment to a deployed endpoint
in WSDL, using the wsdl:port element, i.e., the Effective Policy resulting from the

 Page 19 of 29

combination of Policies declared should be considered a part of the Endpoint Policy
Scope.

5. Attaching Policies Using UDDI
This section defines a mechanism for associating policies with Policy Subjects through
the use of UDDI. It defines a minimum level of support for associating Policy Expressions
with entities in a UDDI registry. The calculation of Effective Policy for UDDI entities is
described in section 5.1. While the general concept for associating Policy Expressions
with UDDI entities, which is specified in sections 5.2 and 5.3, is based on UDDI Version
2 [UDDI API 2.0, UDDI Data Structure 2.0], the necessary changes with respect to UDDI
Version 3 [UDDI 3.0] are explained in section 5.4.

There are essentially two approaches for registering policies in UDDI. One approach is to
directly reference remotely accessible Policy Expressions in UDDI entities, the other is to
register Policy Expressions as distinct tModels and then reference these tModels in each
UDDI entity that is using the Policy Expression. While the former approach (see section
5.2) is expected to be used for Policy Expressions that are mainly unique for a given
Web service, the latter approach (see section 5.3) is expected to be used for more
modular and reusable Policy Expressions.

5.1 Calculating Effective Policy and Element Policy in UDDI
When attaching a Policy to a UDDI entity a Policy Scope is implied for that attachment.
The Policy Scope only contains the Policy Subjects associated with that entity, and not
those associated with the children of that entity. This Policy is the entity's Element
Policy.

Each Policy Assertion contained within a UDDI entity's Element Policy should have the
correct semantic such that the subject for that assertion is that UDDI entity. For
example, assertions that describe behaviours regarding a service provider should only
be contained within policies attached to a businessEntity structure.

For UDDI tModels that represent Web service types, the [Element Policy] is considered
an intrinsic part of the tModel and applies to all uses of that tModel. In particular, it
MUST be merged into the Effective Policy of every bindingTemplate that references that
tModel.

Policies that apply to deployed Web services (bindingTemplates) are only considered in
the Effective Policy of that deployed resource itself.

Each of these entities MAY have an Element Policy per Section 3 of this specification. The
remainder of this section defines how that Element Policy is interpreted to calculate the
Effective Policy.

5.1.1 Service Provider Policy Subject
The following UDDI element is considered as the Service Provider Policy Subject:

• uddi:businessEntity

This element MAY have Element Policy as per Section 3 of this specification, and if
present MUST be merged into the Effective Policy of the UDDI businessEntity Subject.

Policy attached to the Service Provider Policy Subject applies to behaviors or aspects of
the service provider as a whole, irrespective of interactions over any particular service.
This includes – but is not limited to – acting as a service consumer or a service provider
in general.

 Page 20 of 29

5.1.2 Service Policy Subject
The following UDDI element is considered as the Service Policy Subject:

• uddi:businessService

This element MAY have Element Policy as per Section 3 of this specification, and if
present MUST be merged into the Effective Policy of the UDDI businessService Subject.

Policy attached to the Service Policy Subject applies to behaviors or aspects of the
service as a whole, irrespective of interactions over any particular endpoint. This
includes – but is not limited to – acting as a consumer or a provider of the service.

5.1.3 Endpoint Policy Subject
The following UDDI elements collectively describe an endpoint:

• uddi:bindingTemplate

• uddi:tModel

These elements MAY have Element Policy as per Section 3 of this specification. The
Policy Scope implied by each of these elements contains the Endpoint Policy Subject
representing the deployed endpoint.

An Endpoint Policy Subject applies to behaviours associated with an entire endpoint of
the service, irrespective of any message exchange made. This includes – but is not
limited to – aspects of communicating with or instantiating the endpoint.

The Effective Policy for a UDDI endpoint includes the Element Policy of the
uddi:bindingTemplate element that defines the endpoint merged with the Element
Policy of those uddi:tModel elements that are referenced in contained
uddi:tModelInstanceInfo elements.

5.2 Referencing Remote Policy Expressions
UDDI tModels provide a generic mechanism for associating arbitrary metadata with
services and other entities in a UDDI registry. To properly integrate WS-Policy into the
UDDI model, WS-PolicyAttachment pre-defines one tModel that is used to associate a
remotely accessible Policy with an entity in a UDDI registry.

This new tModel is called the Remote Policy Reference category system and is defined in
Appendix A.1.

UDDI registries MUST use the tModelKey uuid:a27078e4-fd38-320a-806f-6749e84f8005
to uniquely identify this tModel so that UDDI registry users can expect the same
behavior across different UDDI registries.

The tModel's valid values are those URIs that identify external Policy Expressions; that
is, when referencing this category system in a categoryBag, the corresponding keyValue
of the keyedReference is the URI of the Policy Expression.

Using the Remote Policy Reference category system, one can then associate a Policy
Expression with a businessEntity, a businessService, and a tModel using the entity's
categoryBag. For example, associating the Policy Expression that is identified by the URI
http://www.example.com/myservice/policy with a businessService is done as follows:

<businessService serviceKey="..." >

 <name>...</name>

 <description>...</description>

 <bindingTemplates>...</bindingTemplates>

 Page 21 of 29

 <categoryBag>

 <keyedReference

 keyName="Policy Expression for example's Web services"

 keyValue="http://www.example.com/myservice/policy"

 tModelKey="uuid:a27078e4-fd38-320a-806f-6749e84f8005" />

 </categoryBag>

</businessService>

The tModelKey of the keyedReference MUST match the fixed tModelKey from the Remote
Policy Reference category system. The keyValue MUST be the URI that identifies the
Policy Expression.

A different approach has to be taken to associate a Policy Expression with a
bindingTemplate, since bindingTemplates do not contain a categoryBag in UDDI Version
2. Therefore, the bindingTemplate's tModelInstanceInfo and instanceParms MUST be
used as follows:

<bindingTemplate bindingKey="..." >

 <accessPoint>...</accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo

 tModelKey="uuid:a27078e4-fd38-320a-806f-6749e84f8005" >

 <instanceDetails>

 <instanceParms>

 http://www.example.com/myservice/policy

 </instanceParms>

 </instanceDetails>

 </tModelInstanceInfo>

 </tModelInstanceDetails>

</bindingTemplate>

The tModelKey of the tModelInstanceInfo MUST match the fixed tModelKey from the
Remote Policy Reference category system as defined above. The instanceParms MUST be
the URI that identifies the Policy Expression.

5.3 Registering Reusable Policy Expressions
In addition to using the approach outlined in the section above, publishers may register
a specific Policy Expression in a UDDI registry as a distinct tModel. To properly
categorize tModels as Policy Expressions, WS-PolicyAttachment pre-defines the WS-
Policy Types category system as a tModel. This tModel is defined in Appendix A.2.

The following illustrates a tModel for the Policy Expression identified by the URI
http://www.example.com/myservice/policy.

<tModel tModelKey="uuid:04cfa...">

 <name>...</name>

 Page 22 of 29

 <description xml:lang="EN">

 Policy Expression for example's Web services

 </description>

 <overviewDoc>

 <description xml:lang="EN">WS-Policy Expression</description>

 <overviewURL>http://www.example.com/myservice/policy</overviewURL>

 </overviewDoc>

 <categoryBag>

 <keyedReference

 keyName="Reusable policy Expression"

 keyValue="policy"

 tModelKey="uuid:fa1d77dc-edf0-3a84-a99a-5972e434e993" />

 <keyedReference

 keyName="Policy Expression for example's Web services"

 keyValue="http://www.example.com/myservice/policy"

 tModelKey="uuid:a27078e4-fd38-320a-806f-6749e84f8005" />

 </categoryBag>

</tModel>

The first keyedReference specifies that the tModel represents a Policy Expression –
rather than only being associated with one - by using the WS-Policy Types category
system's built-in category "policy", which is its single valid value. This is necessary in
order to enable UDDI inquiries for Policy Expressions in general. The second
keyedReference designates the Policy Expression the tModel represents by using the
approach from the section above. This is necessary in order to enable UDDI inquiries for
particular Policy Expressions based on their URI.

Note that the Policy Expression URI is also specified in the tModel's overview URL to
indicate that it is a resolvable URL to actually retrieve the Policy Expression.

WS-PolicyAttachment pre-defines another tModel that is used to associate such a pre-
registered, locally available Policy Expressions with an entity in a UDDI registry

This new tModel is called the Local Policy Reference category system and is defined in
Appendix A.3.

UDDI registries MUST use the tModelKey uuid:a27f7d45-ec90-31f7-a655-efe91433527c
to uniquely identify this tModel so that UDDI registry users can expect the same
behavior across different UDDI registries.

The Local Policy Reference category system is based on tModelKeys. The valid values of
this category system are those tModelKeys identifying tModels that

• exist in the same UDDI registry

• and are categorized as "policy" using the WS-Policy Types category system.

That is, when referencing this category system in a category bag, the corresponding
keyValue of the keyedReference is the tModelKey of the tModel that represents the
Policy Expression.

 Page 23 of 29

Given the Local Policy Reference category system, one can then associate a Policy
Expression tModel with a businessEntity, a businessService, and a tModel using the
entity's categoryBag. For example, associating the Policy Expression tModel with the
tModelKey "uuid:04cfa..." from above with a businessService is done as follows:

<businessService serviceKey="..." >

 <name>...</name>

 <description>...</description>

 <bindingTemplates>...</bindingTemplates>

 <categoryBag>

 <keyedReference

 keyName="Policy Expression for example's Web services"

 keyValue="uuid:04cfa..."

 tModelKey="uuid:a27f7d45-ec90-31f7-a655-efe91433527c" />

 </categoryBag>

</businessService>

The tModelKey of the keyedReference MUST match the fixed tModelKey from the Local
Policy Reference category system. The keyValue MUST be the tModelKey of the Policy
Expression that is registered with the UDDI registry.

A different approach has to be taken to associate a Policy Expression with a
bindingTemplate, since bindingTemplates do not contain a categoryBag in UDDI Version
2. Therefore, the bindingTemplate's tModelInstanceInfo and instanceParms MUST be
used as follows:

<bindingTemplate bindingKey="..." >

 <accessPoint>...</accessPoint>

 <tModelInstanceDetails>

 <tModelInstanceInfo

 tModelKey="uuid:a27f7d45-ec90-31f7-a655-efe91433527c" >

 <instanceDetails>

 <instanceParms>uuid:04cfa...</instanceParms>

 </instanceDetails>

 </tModelInstanceInfo>

 </tModelInstanceDetails>

</bindingTemplate>

The tModelKey of the tModelInstanceInfo MUST match the fixed tModelKey from the
Local Policy Reference category system. The instanceParms MUST be the tModelKey of
the Policy Expression that is registered with the UDDI registry.

5.4 Registering Policies in UDDI Version 3
UDDI Version 3 [UDDI 3.0] provides a number of enhancements in the areas of
modeling and entity keying. Special considerations for UDDI multi-version support are

 Page 24 of 29

outlined in chapter 10 of [UDDI 3.0]. The changes with respect to the previous sections
are as follows.

First, the tModelKeys of the pre-defined tModels are migrated to domain-based keys.
The migration is unique since the Version 2 keys introduced in this specification are
already programmatically derived from the Version 3 keys given below.

The tModelKey for the Remote Policy Reference tModel changes from
"uuid:a27078e4-fd38-320a-806f-6749e84f8005" to
"uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03".

The tModelKey for the WS-Policy Types tModel changes from
"uuid:fa1d77dc-edf0-3a84-a99a-5972e434e993" to
"uddi:schemas.xmlsoap.org:policytypes:2003_03".

The tModelKey for the Local Policy Reference tModel changes from
"uuid:a27f7d45-ec90-31f7-a655-efe91433527c" to
"uddi:schemas.xmlsoap.org:localpolicyreference:2003_03".

Second, rather than putting Policy Expression references in a bindingTemplate's
tModelInstanceInfo, they are added to the bindingTemplate's categoryBag, analogous to
the mechanism described for other UDDI entities. For example, the example
bindingTemplate from section 5.1 would be changed as follows:

<bindingTemplate bindingKey="..." >

 <accessPoint>...</accessPoint>

 <tModelInstanceDetails>...</tModelInstanceDetails>

 <categoryBag>

 <keyedReference

 keyName="Policy Expression for example's Web services"

 keyValue="http://www.example.com/myservice/policy"

 tModelKey="uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03"

 />

 </categoryBag>

</bindingTemplate>

Third, inquiries for reusable Policy Expression tModels and UDDI entities that are
associated with remote Policy Expression is enhanced by the wildcard mechanism for
keyValues in keyedReferences. For example, searching for all Policy Expression tModels
whose URI starts with http://www.example.com, the following find_tModel API call can
be used:

<find_tModel xmlns="urn:uddi-org:api_v3" >

 <categoryBag>

 <keyedReference

 keyValue="http://www.example.com"

 tModelKey="uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03"

 />

 </categoryBag>

 Page 25 of 29

 <findQualifiers>

 <findQualifier>approximateMatch</findQualifier>

 </findQualifiers>

</find_tModel>

Fourth, all UDDI entities may be digitally signed using XML digital signatures [XML-
Signature]. Publishers who want to digitally sign their Policy Expression tModels or Policy
Expression references in UDDI MUST use the Schema-centric canonicalization algorithm
[SCC14N].

6. Security Considerations
It is RECOMMENDED that Policy Attachments be signed to prevent tampering. This also
provides a mechanism for authenticating Policy Attachments by determining if the signer
has the right to "speak for" the scope of the Policy Attachment.

Policies SHOULD NOT be accepted unless they are signed and have an associated
security token to specify the signer has the right to "speak for" the scope containing the
Policy.

7. Acknowledgements
We would like to thank the following people for their contributions towards this
specification: Dimitar Angelov (SAP), Martijn de Boer (SAP), Erik Christensen
(Microsoft), Giovanni Della-Libera (Microsoft), Christopher Ferris (IBM), Martin Gudgin
(Microsoft), Andrew Hately (IBM), Yigal Hoffner (IBM), Brian Hulse (IBM), Andrew Jones
(IBM), Todd Karakashian (BEA Systems), Scott Konersmann (Microsoft), Al Lee
(Microsoft), David Levin (Microsoft), Frank Leymann (IBM), Steve Lucco (Microsoft),
Ashok Malhotra (formerly Microsoft), Steve Millet (Microsoft), Nataraj Nagaratnam
(IBM), Henrik Frystyk Nielsen (Microsoft), Paul Nolan (IBM), Mark Nottingham, (formerly
BEA Systems), Yasser Shohoud (Microsoft), Keith Stobie (Microsoft), Tony Storey (IBM),
Sanjiva Weerawarana (IBM, currently WSO2), Volker Wiechers (SAP).

8. References
[BP 1.1]

K. Ballinger, et al, "Basic Profile Version 1.1" August 2004. (See http://www.ws-
i.org/Profiles/BasicProfile-1.1-2004-08-24.html.)

[RFC 2119]
S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119,
March 1997. (See http://www.ietf.org/rfc/rfc2119.txt.)

[SCC14N]
S. Aissi, et al "Schema Centric XML Canonicalization Version 1.0," July 2002. (See
http://uddi.org/pubs/SchemaCentricCanonicalization-20020710.htm.)

[SOAP 1.1]
Don Box, et al, "SOAP: Simple Object Access Protocol 1.1," May 2000. (See
http://www.w3.org/TR/2000/NOTE-SOAP-20000508.)

[SOAP 1.2]
M. Gudgin, et al, "SOAP Version 1.2 Part 1: Messaging Framework," December 2002.
(See http://www.w3.org/TR/2003/REC-soap12-part1-20030624/.)

[UDDI API 2.0]

 Page 26 of 29

D. Ehnebuske, et al, "UDDI Version 2.04 API," July 2002. (See
http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm.)

[UDDI Data Structure 2.0]
D. Ehnebuske, et al, "UDDI Version 2.03 Data Structure Reference," July 2002. (See
http://uddi.org/pubs/DataStructure-V2.03-Published-20020719.htm.)

[UDDI 3.0]
T. Bellwood, et al, "UDDI Version 3.0.2," October 2004. (See
http://uddi.org/pubs/uddi-v3.0.2-20041019.htm.)

[WS-Addressing]
D. Box, et al, "Web Services Addressing (WS-Addressing)," August 2004. (See
http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/.)

[WS-MetadataExchange]
K. Ballinger, et al, "Web Services Metadata Exchange (WS-MetadataExchange),"
September 2004. (See http://schemas.xmlsoap.org/ws/2004/09/mex/.)

[WS-Policy]
D. Box, et al, "Web Services Policy Framework (WS-Policy)," March 2006. (See
http://schemas.xmlsoap.org/ws/2004/09/policy.)

[WS-RM Policy]
S. Batres, et al, "Web Services Reliable Messaging Policy Assertion (WS-RM Policy),"
February 2005. (See http://www.oasis-open.org/committees/download.php/16889/.)

[WS-Security 2004]
A. Nadalin, et al, "Web Services Security: SOAP Message Security 1.0 (WS-Security
2004)," March 2004. (See http://docs.oasis-open.org/wss/2004/01/oasis-200401-
wss-soap-message-security-1.0.pdf.)

[WS-SecurityPolicy]
G. Della-Libera, et al, "Web Services Security Policy Language (WS-SecurityPolicy),"
July 2005. (See http://www.oasis-open.org/committees/download.php/16569/.)

[WSDL 1.1]
E. Christensen, et al, "Web Services Description Language (WSDL) 1.1," March 2001.
(See http://www.w3.org/TR/2001/NOTE-wsdl-20010315.)

[WSDL 1.1 Binding for SOAP 1.2]
K. Ballinger, et al, “WSDL 1.1 Binding for SOAP 1.2,” April 2002. (See
http://schemas.xmlsoap.org/wsdl/soap12/.)

[XML Infoset]
J. Cowan, et al, "XML Information Set (Second Edition)," February 2004. (See
http://www.w3.org/TR/2004/REC-xml-infoset-20040204.)

[XML-NS]
T. Bray, et al, "Namespaces in XML," January 1999. (See
http://www.w3.org/TR/1999/REC-xml-names-19990114.)

[XML Schema Part 1]
H. Thompson, et al, "XML Schema Part 1: Structures Second Edition," October 2004.
(See http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.)

[XML-Signature]
D. Eastlake, et al, "XML-Signature Syntax and Processing," February 2002. (See
http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.)

 Page 27 of 29

Appendix A: UDDI tModel Definitions
This section contains the UDDI tModel definitions for the canonical tModels used in
Section 5. The tModelKeys shown in the tModel structure sections are valid UDDI Version
2 keys. When using UDDI Version 3, the corresponding derived UDDI Version 2 keys
must be used.

A.1 Remote Policy Reference Category System

A1.1 Design Goals

This tModel is used to attach a Policy to a UDDI entity by referencing the Policy's URI.

A1.2 tModel Definition

Name: http://schemas.xmlsoap.org/ws/2003/03/remotepolicyreference

Description: Category system used for UDDI entities to point to an external WS-
PolicyAttachment Policy that describes their characteristics. See WS-
PolicyAttachment specification for further details.

UDDI Key (V3): uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03

UDDI V1,V2
format key:

uuid:a27078e4-fd38-320a-806f-6749e84f8005

Categorization: categorization

Checked: No

A1.3 tModel Structure

<tModel tModelKey="uuid:a27078e4-fd38-320a-806f-6749e84f8005" >

 <name>http://schemas.xmlsoap.org/ws/2003/03/remotepolicyreference</name>

 <description xml:lang="EN">Category system used for UDDI entities to

point to an external WS-PolicyAttachment Policy Expression that describes

their characteristics. See WS-PolicyAttachment specification for further

details.</description>

 <categoryBag>

 <keyedReference

 keyName="uddi-org:types:categorization"

 keyValue="categorization"

 tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4" />

 </categoryBag>

</tModel>

A.2 WS-Policy Types Category System

A2.1 Design Goals

This tModel is used to categorize tModels as representing Policy Expressions. There is
only one valid value, namely "policy", that indicates this very fact. It is RECOMMENDED
that tModels categorized as representing Policy Expressions reference no more and no

 Page 28 of 29

less than this very Policy Expression using the Remote Policy Reference category
system.

A2.2 tModel Definition

Name: http://schemas.xmlsoap.org/ws/2003/03/policytypes

Description: WS-Policy Types category system used for UDDI tModels to
characterize them as WS-Policy – based Policy Expressions.

UDDI Key (V3): uddi:schemas.xmlsoap.org:policytypes:2003_03

UDDI V1,V2
format key:

uuid:fa1d77dc-edf0-3a84-a99a-5972e434e993

Categorization: categorization

Checked: No

A2.3 tModel Structure

<tModel tModelKey="uuid:fa1d77dc-edf0-3a84-a99a-5972e434e993" >

 <name>http://schemas.xmlsoap.org/ws/2003/03/policytypes</name>

 <description xml:lang="EN">WS-Policy Types category system used for UDDI

tModels to characterize them as WS-Policy – based Policy

Expressions.</description>

 <categoryBag>

 <keyedReference

 keyName="uddi-org:types:categorization"

 keyValue="categorization"

 tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62ab4" />

 </categoryBag>

</tModel>

A.3 Local Policy Reference Category System

A3.1 Design Goals

This tModel is used to attach a Policy Expression to a UDDI entity by referencing the
UDDI entity that represents this Policy Expression. The Local Policy Reference category
system is based on tModelKeys. It is expected that referenced tModels are registered
with the same UDDI registry and are categorized as representing Policy Expressions
using the WS-Policy Types category system.

A3.2 tModel Definition

Name: http://schemas.xmlsoap.org/ws/2003/03/localpolicyreference

Description: Category system used for UDDI entities to point to a WS-Policy
Policy Expression tModel that describes their characteristics. See
WS-PolicyAttachment specification for further details.

UDDI Key (V3): uddi:schemas.xmlsoap.org:remotepolicyreference:2003_03

 Page 29 of 29

UDDI V1,V2
format key:

uuid:a27f7d45-ec90-31f7-a655-efe91433527c

Categorization: categorization

Checked: Yes

A3.3 tModel Structure

<tModel tModelKey="uuid:a27f7d45-ec90-31f7-a655-efe91433527c" >

 <name>http://schemas.xmlsoap.org/ws/2003/03/localpolicyreference</name>

 <description xml:lang="en">Category system used for UDDI entities to

point to a WS-Policy Policy Expression tModel that describes their

characteristics. See WS-PolicyAttachment specification for further

details.</description>

 <categoryBag>

 <keyedReference

 keyName="uddi-org:types:categorization"

 keyValue="categorization"

 tModelKey="uuid:c1acf26d-9672-4404-9d70-39b756e62aB4" />

 <keyedReference

 keyName="uddi-org:entityKeyValues"

 keyValue="tModelKey"

 tModelKey="uuid:916b87bf-0756-3919-8eae-97dfa325e5a4" />

 </categoryBag>

</tModel>

