
Web Services Trust Language (WS-Trust) 
February 2005 

Authors 

Steve Anderson, OpenNetwork 
Jeff Bohren, OpenNetwork 
Toufic Boubez, Layer 7 
Marc Chanliau, Computer Associates 
Giovanni Della-Libera, Microsoft  
Brendan Dixon, Microsoft  
Praerit Garg, Microsoft 
Martin Gudgin (Editor), Microsoft 
Phillip Hallam-Baker, VeriSign 
Maryann Hondo, IBM 
Chris Kaler, Microsoft 
Hal Lockhart, BEA 
Robin Martherus, Oblix 
Hiroshi Maruyama, IBM 
Anthony Nadalin (Editor), IBM 
Nataraj Nagaratnam, IBM  
Andrew Nash, Reactivity 
Rob Philpott, RSA Security 
Darren Platt, Ping Identity 
Hemma Prafullchandra, VeriSign 
Maneesh Sahu, Actional 
John Shewchuk, Microsoft  
Dan Simon, Microsoft  
Davanum Srinivas, Computer Associates 
Elliot Waingold, Microsoft 
David Waite, Ping Identity 
Doug Walter, Microsoft 
Riaz Zolfonoon, RSA Security 

Copyright Notice 
(c) 2001-2005 Actional Corporation, BEA Systems, Inc., Computer Associates 
International, Inc., International Business Machines Corporation, Layer 7 Technologies, 
Microsoft Corporation, Oblix Inc., OpenNetwork Technologies Inc., Ping Identity 
Corporation, Reactivity Inc., RSA Security Inc., and VeriSign Inc. All rights reserved. 

Permission to copy and display the WS-Trust Specification (the “Specification”, which 
includes WSDL and schema documents), in any medium without fee or royalty is hereby 
granted, provided that you include the following on ALL copies of the Specification, that 
you make: 

 

1.  A link or URL to the Specification at one of the Authors’ websites 

2. The copyright notice as shown in the Specification. 

 

Page 1 of 68 

http://www.actional.com/
http://www.bea.com/
http://www.ca.com/
http://www.ca.com/
http://www.ibm.com/
http://www.layer7-tech.com/
http://www.microsoft.com/
http://www.oblix.com/
http://www.opennetwork.com/
http://www.pingidentity.com/
http://www.pingidentity.com/
http://www.reactivity.com/
http://www.rsasecurity.com/
http://www.verisign.com/


IBM, Microsoft and Actional, BEA, Computer Associates, Layer 7, Oblix, OpenNetwork, 
Ping Identity, Reactivity, and Verisign (collectively, the "Authors") each agree to grant 
you a license, under royalty-free and otherwise reasonable, non-discriminatory terms 
and conditions, to their respective essential patent claims that they deem necessary to 
implement the Specification. 

 

THE SPECIFICATION IS PROVIDED "AS IS," AND THE AUTHORS MAKE NO 
REPRESENTATIONS OR WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT 
LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, NON-INFRINGEMENT, OR TITLE; THAT THE CONTENTS OF THE 
SPECIFICATION ARE SUITABLE FOR ANY PURPOSE; NOR THAT THE IMPLEMENTATION 
OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, 
TRADEMARKS OR OTHER RIGHTS. 

 

THE AUTHORS WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL, INCIDENTAL 
OR CONSEQUENTIAL DAMAGES ARISING OUT OF OR RELATING TO ANY USE OR 
DISTRIBUTION OF THE SPECIFICATION. 

 

The name and trademarks of the Authors may NOT be used in any manner, including 
advertising or publicity pertaining to the Specification or its contents without specific, 
written prior permission. Title to copyright in the Specification will at all times remain 
with the Authors. 

 

No other rights are granted by implication, estoppel or otherwise. 

Abstract 
This specification defines extensions that build on [WS-Security] to provide a framework 
for requesting and issuing security tokens, and to broker trust relationships. 

Modular Architecture  
By using the XML, SOAP and WSDL extensibility models, the WS-* specifications are 
designed to be composed with each other to provide a rich Web services environment. 
WS-Trust by itself does not provide a complete security solution for Web services.  WS-
Trust is a building block that is used in conjunction with other Web service and 
application-specific protocols to accommodate a wide variety of security models. 

Status 
This WS-Trust Specification is an initial public draft release and is provided for review 
and evaluation only. Actional, BEA, Computer Associates, IBM, Layer7, Microsoft, Oblix, 
OpenNetwork, Ping Identity, Reactivity, RSA Security, and VeriSign hope to solicit your 
contributions and suggestions in the near future. Actional, BEA, Computer Associates, 
IBM, Layer7, Microsoft, Oblix, OpenNetwork, Ping Identity, Reactivity, RSA Security, and 
VeriSign make no warrantees or representations regarding the specifications in any 
manner whatsoever. 

Page 2 of 68 



Table of Contents  
1. Overview 

1.1 Goals and Non-Goals 
1.2 Requirements 

2. Notations and Terminology 
2.1 Notational Conventions 
2.2 Namespace 
2.3 Schema and WSDL Files 
2.4 Terminology 

3. Web Services Trust Model 
4. Models for Trust Brokering and Assessment 

4.1 Token Acquisition 
4.2 Out-of-Band Token Acquisition 
4.3 Trust Bootstrap 

5. Security Token Service Framework 
5.1 Requesting a Security Token 
5.2 Returning a Security Token 
5.3 Binary Secrets 
5.4 Composition 

6. Issuance Binding 
6.1 Requesting a Security Token 
6.2 Returning a Security Token 

6.2.1 wsp:AppliesTo in RST and RSTR 
6.2.2 Requested References 
6.2.3 Keys and Entropy 
6.2.4 Returning Computed Keys 
6.2.5 Sample Response with Encrypted Secret 
6.2.6 Sample Response with Unencrypted Secret 
6.2.7 Sample Response with Token Reference 
6.2.8 Sample Response without Proof-of-Possession Token 

6.3 Returning Multiple Security Tokens 
6.3.1 Zero or One Proof-of-Possession Token Case 
6.3.2 More Than One Proof-of-Possession Tokens Case 

6.4. Returning Security Tokens in Headers 
7. Renewal Binding 
8. Cancel Binding 
9. Validation Binding 
10. Negotiation and Challenge Extensions 

10.1 Negotiation and Challenge Framework 
10.2 Signature Challenges 
10.3 Binary Exchanges and Negotiations 

Page 3 of 68 



10.4 Key Exchange Tokens 
10.5 Custom Exchanges 
10.6 Signature Challenge Example 
10.7 Custom Exchange Example 
10.8 Protecting Exchanges 
10.9 Authenticating Exchanges 

11. Key and Token Parameter Extensions 
11.1 On-Behalf-Of Parameters 
11.2 Key and Encryption Requirements 
11.3 Delegation and Forwarding Requirements 
11.4 Policies 
11.5 Authorized Token Participants 

12. Key Exchange Token Binding 
13. Error Handling 
14. Security Considerations 
15. Acknowledgements 
16. References 
Appendix I – Key Exchange 

I.1 Ephemeral Encryption Keys 
I.2 Requestor-Provided Keys 
I.3 Issuer-Provided Keys 
I.4 Composite Keys 
I.5 Key Transfer and Distribution 

I.5.1 Direct Key Transfer 
I.5.2 Brokered Key Distribution 
I.5.3 Delegated Key Transfer 
I.5.4 Authenticated Request/Reply Key Transfer 

I.6 Perfect Forward Secrecy 
Appendix II – WSDL 

1. Overview 
[WS-Security] defines the basic mechanisms for providing secure messaging.  This 
specification uses these base mechanisms and defines additional primitives and 
extensions for security token exchange to enable the issuance and dissemination of 
credentials within different trust domains. 

In order to secure a communication between two parties, the two parties must exchange 
security credentials (either directly or indirectly).  However, each party needs to 
determine if they can "trust" the asserted credentials of the other party. 

In this specification we define extensions to [WS-Security] that provide: 

• Methods for issuing, renewing, and validating security tokens. 

• Ways to establish, assess the presence of, and broker trust relationships. 

Page 4 of 68 



Using these extensions, applications can engage in secure communication designed to 
work with the general Web services framework, including WSDL service descriptions, 
UDDI businessServices and bindingTemplates, and [SOAP] messages. 

To achieve this, this specification introduces a number of elements that are used to 
request security tokens and broker trust relationships. 

This specification defines a number of extensions; compliant services are NOT 
REQUIRED to implement everything defined in this specification.  However, if a service 
implements an aspect of the specification, it MUST comply with the requirements 
specified (e.g. related "MUST" statements). 

Section 12 is non-normative. 

1.1 Goals and Non-Goals 
The goal of WS-Trust is to enable applications to construct trusted [SOAP] message 
exchanges. This trust is represented through the exchange and brokering of security 
tokens. This specification provides a protocol agnostic way to issue, renew, and validate 
these security tokens. 

This specification is intended to provide a flexible set of mechanisms that can be used to 
support a range of security protocols; this specification intentionally does not describe 
explicit fixed security protocols. 

As with every security protocol, significant efforts must be applied to ensure that specific 
profiles and message exchanges constructed using WS-Trust are not vulnerable to 
attacks (or at least that the attacks are understood). 

The following are explicit non-goals for this document: 

• Password authentication 

• Token revocation 

• Management of trust policies 

Additionally, the following topics are outside the scope of this document: 

• Establishing a security context token 

• Key derivation 

1.2 Requirements 
The Web services trust specification must support a wide variety of security models.  
The following list identifies the key driving requirements for this specification:  

• Requesting and obtaining security tokens 

• Managing trusts and establishing trust relationships 

• Establishing and assessing trust relationships 

2. Notations and Terminology 
This section specifies the notations, namespaces, and terminology used in this 
specification. 

2.1 Notational Conventions 
The keywords "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", 
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be 
interpreted as described in [RFC2119]. 

Page 5 of 68 



Namespace URIs of the general form "some-URI" represents some application-
dependent or context-dependent URI as defined in [RFC2396]. 

2.2 Namespace 
The [XML namespace] [URI] that MUST be used by implementations of this specification 
is: 

    http://schemas.xmlsoap.org/ws/2005/02/trust 

The following namespaces are used in this document: 

Prefix Namespace 

S11 http://schemas.xmlsoap.org/soap/envelope/

S12 http://www.w3.org/2003/05/soap-envelope

wsu http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-utility-1.0.xsd  

wsse http://docs.oasis-open.org/wss/2004/01/oasis-
200401-wss-wssecurity-secext-1.0.xsd  

wst http://schemas.xmlsoap.org/ws/2005/02/trust

ds http://www.w3.org/2000/09/xmldsig#  

xenc http://www.w3.org/2001/04/xmlenc#  

wsp http://schemas.xmlsoap.org/ws/2004/09/policy  

wsa http://schemas.xmlsoap.org/ws/2004/08/addressing  

xs http://www.w3.org/2001/XMLSchema

2.3 Schema and WSDL Files 
The schema for this specification can be located at: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/ws-trust.xsd 

The WSDL for this specification can be located in Appendix II of this document as well as 
at: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/ws-trust.wsdl 

In this document, reference is made to the wsu:Id attribute, wsu:Created and 
wsu:Expires elements in the utility schema. These were added to the utility schema 
with the intent that other specifications requiring such an ID or timestamp could 
reference it (as is done here). 

Page 6 of 68 

http://schemas.xmlsoap.org/soap/envelope/
http://www.w3.org/2003/05/soap-envelope
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd
http://schemas.xmlsoap.org/ws/2004/04/trust
http://www.w3.org/2000/09/xmldsig
http://www.w3.org/2001/04/xmlenc
http://schemas.xmlsoap.org/ws/2002/12/policy
http://schemas.xmlsoap.org/ws/2004/08/addressing
http://www.w3.org/2001/XMLSchema


2.4 Terminology 
We provide basic definitions for the security terminology used in this specification.  Note 
that readers should be familiar with the [WS-Security] specification. 

Claim – A claim is a statement made about a client, service or other resource (e.g. 
name, identity, key, group, privilege, capability, etc.). 

Security Token – A security token represents a collection of claims. 

Signed Security Token – A signed security token is a security token that is 
cryptographically endorsed by a specific authority (e.g. an X.509 certificate or a 
Kerberos ticket). 

Proof-of-Possession Token – A proof-of-possession (POP) token is a security token 
that contains secret data that can be used to demonstrate authorized use of an 
associated security token. Typically, although not exclusively, the proof-of-possession 
information is encrypted with a key known only to the recipient of the POP token. 

Digest – A digest is a cryptographic checksum of an octet stream. 

Signature – A signature is a value computed with a cryptographic algorithm and bound 
to data in such a way that intended recipients of the data can use the signature to verify 
that the data has not been altered and/or has originated from the signer of the 
message, providing message integrity and authentication. The signature can be 
computed and verified with symmetric key algorithms, where the same key is used for 
signing and verifying, or with asymmetric key algorithms, where different keys are used 
for signing and verifying (a private and public key pair are used). 

Trust Engine – The trust engine of a Web service is a conceptual component that 
evaluates the security-related aspects of a message as described in section 3 below. 

Security Token Service – A security token service (STS) is a Web service that issues 
security tokens (see [WS-Security]).  That is, it makes assertions based on evidence 
that it trusts, to whoever trusts it (or to specific recipients).  To communicate trust, a 
service requires proof, such as a signature to prove knowledge of a security token or set 
of security tokens. A service itself can generate tokens or it can rely on a separate STS 
to issue a security token with its own trust statement (note that for some security token 
formats this can just be a re-issuance or co-signature).  This forms the basis of trust 
brokering. 

Trust – Trust is the characteristic that one entity is willing to rely upon a second entity 
to execute a set of actions and/or to make set of assertions about a set of subjects 
and/or scopes.  

Direct Trust – Direct trust is when a relying party accepts as true all (or some subset 
of) the claims in the token sent by the requestor. 

Direct Brokered Trust – Direct Brokered Trust is when one party trusts a second party 
who, in turn, trusts or vouches for, a third party. 

Indirect Brokered Trust – Indirect Brokered Trust is a variation on direct brokered 
trust where the second party negotiates with the third party, or additional parties, to 
assess the trust of the third party. 

Message Freshness – Message freshness is the process of verifying that the message 
has not been replayed and is currently valid.

Page 7 of 68 



3. Web Services Trust Model 
The Web service security model defined in WS-Trust is based on a process in which a 
Web service can require that an incoming message prove a set of claims (e.g., name, 
key, permission, capability, etc.).  If a message arrives without having the required 
proof of claims, the service SHOULD ignore or reject the message.  A service can 
indicate its required claims and related information in its policy as described by [WS-
Policy] and [WS-PolicyAttachment] specifications. 

Authentication of requests is based on a combination of optional network and transport-
provided security and information (claims) proven in the message.  Requestors can 
authenticate recipients using network and transport-provided security, claims proven in 
messages, and encryption of the request using a key known to the recipient. 

One way to demonstrate authorized use of a security token is to include a digital 
signature using the associated secret key (from a proof-of-possession token).  This 
allows a requestor to prove a required set of claims by associating security tokens (e.g., 
PKIX, X.509 certificates) with the messages. 

• If the requestor does not have the necessary token(s) to prove required claims to a 
service, it can contact appropriate authorities (as indicated in the service's policy) 
and request the needed tokens with the proper claims.  These "authorities", which 
we refer to as security token services, may in turn require their own set of claims for 
authenticating and authorizing the request for security tokens.  Security token 
services form the basis of trust by issuing a range of security tokens that can be 
used to broker trust relationships between different trust domains. 

• This specification also defines a general mechanism for multi-message exchanges 
during token acquisition.  One example use of this is a challenge-response protocol 
that is also defined in this specification. This is used by a Web service for additional 
challenges to a requestor to ensure message freshness and verification of authorized 
use of a security token. 

This model is illustrated in the figure below, showing that any requestor may also be a 
service, and that the Security Token Service is a Web service (that is, it may express 
policy and require security tokens). 

 

 

This general security model – claims, policies, and security tokens – subsumes and 
supports several more specific models such as identity-based authorization, access 
control lists, and capabilities-based authorization.  It allows use of existing technologies 

Page 8 of 68 



such as X.509 public-key certificates, XML-based tokens, Kerberos shared-secret tickets, 
and even password digests.  The general model in combination with the [WS-Security] 
and [WS-Policy] primitives is sufficient to construct higher-level key exchange, 
authentication, policy-based access control, auditing, and complex trust relationships. 

In the figure above the arrows represent possible communication paths; the requestor 
may obtain a token from the security token service, or it may have been obtained 
indirectly.  The requestor then demonstrates authorized use of the token to the Web 
service.  The Web service either trusts the issuing security token service or may request 
a token service to validate the token (or the Web service may validate the token itself). 

In summary, the Web service has a policy applied to it, receives a message from a 
requestor that possibly includes security tokens, and may have some protection applied 
to it using [WS-Security] mechanisms.  The following key steps are performed by the 
trust engine of a Web service (note that the order of processing is non-normative): 

1. Verify that the claims in the token are sufficient to comply with the policy and 
that the message conforms to the policy. 

2. Verify that the attributes of the claimant are proven by the signatures. In 
brokered trust models, the signature may not verify the identity of the claimant – 
it may verify the identity of the intermediary, who may simply assert the identity 
of the claimant. The claims are either proven or not based on policy. 

3. Verify that the issuers of the security tokens (including all related and issuing 
security token) are trusted to issue the claims they have made. The trust engine 
may need to externally verify or broker tokens (that is, send tokens to a security 
token service in order to exchange them for other security tokens that it can use 
directly in its evaluation). 

If these conditions are met, and the requestor is authorized to perform the operation, 
then the service can process the service request. 

In this specification we define how security tokens are requested and obtained from 
security token services and how these services may broker trust and trust policies so 
that services can perform step 3. 

Network and transport protection mechanisms such as IPsec or TLS/SSL can be used in 
conjunction with this specification to support different security requirements and 
scenarios.  If available, requestors should consider using a network or transport security 
mechanism to perform pre-authentication of the recipient when requesting, validating, 
or renewing security tokens as an added level of security. 

The [WS-Federation] specification builds on this specification to define mechanisms for 
brokering and federating trust, identity, and claims.  Examples are provided in [WS-
Federation] illustrating different trust scenarios and usage patterns. 

4. Models for Trust Brokering and Assessment 
This section outlines different models for obtaining tokens and brokering trust.  These 
methods depend on whether the token issuance is based on explicit requests (token 
acquisition) or if it is external to a message flow (out-of-band and trust management). 

4.1 Token Acquisition 
As part of a message flow, a request may be made of a security token service to 
exchange a security token (or some proof) of one form for another.  The exchange 
request can be made either by a requestor or by another party on the requestor's 

Page 9 of 68 



behalf.  If the security token service trusts the provided security token (for example, 
because it trusts the issuing authority of the provided security token), and the request 
can prove possession of that security token, then the exchange is processed by the 
security token service. 

The previous paragraph illustrates an example of token acquisition in a direct trust 
relationship. In the case of a delegated request (one in which another party provides the 
request on behalf of the requestor rather than the requestor presenting it themselves), 
the security token service generating the new token may not need to trust the authority 
that issued the original token provided by the original requestor since it does trust the 
security token service that is engaging in the exchange for a new security token. The 
basis of the trust is the relationship between the two security token services. 

4.2 Out-of-Band Token Acquisition 
The previous section illustrated acquisition of tokens.  That is, a specific request is made 
and the token is obtained.  Another model involves out-of-band acquisition of tokens.  
For example, the token may be sent from an authority to a party without the token 
having been explicitly requested.  As well, the token may have been obtained as part of 
a third-party or legacy protocol.  In any of these cases the token is not received in 
response to a direct SOAP request. 

4.3 Trust Bootstrap 
An administrator or other trusted authority may designate that all tokens of a certain 
type are trusted (e.g. all Kerberos tokens from a specific realm or all X.509 tokens from 
a specific CA).  The security token service maintains this as a trust axiom and can 
communicate this to trust engines to make their own trust decisions (or revoke it later), 
or the security token service may provide this function as a service to trusting services. 

There are several different mechanisms that can be used to bootstrap trust for a service.  
These mechanisms are non-normative and are not required in any way.  That is, 
services are free to bootstrap trust and establish trust among a domain of services or 
extend this trust to other domains using any mechanism. 

Fixed trust roots – The simplest mechanism is where the recipient has a fixed set of 
trust relationships.  It will then evaluate all requests to determine if they contain 
security tokens from one of the trusted roots. 

Trust hierarchies – Building on the trust roots mechanism, a service may choose to 
allow hierarchies of trust so long as the trust chain eventually leads to one of the known 
trust roots.  In some cases the recipient may require the sender to provide the full 
hierarchy.  In other cases, the recipient may be able to dynamically fetch the tokens for 
the hierarchy from a token store. 

Authentication service – Another approach is to use an authentication service.  This 
can essentially be thought of as a fixed trust root where the recipient only trusts the 
authentication service.  Consequently, the recipient forwards tokens to the 
authentication service, which replies with an authoritative statement (perhaps a 
separate token or a signed document) attesting to the authentication. 

5. Security Token Service Framework 
This section defines the general framework used by security token services for token 
issuance. 

Page 10 of 68 



A requestor sends a request, and if the policy permits and the recipient's requirements 
are met, then the requestor receives a security token response.  This process uses the 
<wst:RequestSecurityToken> and <wst:RequestSecurityTokenResponse> elements 
respectively.  These elements are passed as the payload to specific WSDL ports 
(described in section 2.3) that are implemented by security token services. 

This framework does not define specific actions; each binding defines its own actions. 

When requesting and returning security tokens additional parameters can be included in 
requests, or provided in responses to indicate server-determined (or used) values.  If a 
requestor specifies a specific value that isn't supported by the recipient, then the 
recipient MAY fault with a wst:InvalidRequest (or a more specific fault code), or they 
MAY return a token with their chosen parameters that the requestor may then choose to 
discard because it doesn't meet their needs. 

The requesting and returning of security tokens can be used for a variety of purposes.  
Bindings define how this framework is used for specific usage patterns.  Other 
specifications may define specific bindings and profiles of this mechanism for additional 
purposes.   

In general, it is RECOMMENDED that sources of requests be authenticated; however, in 
some cases an anonymous request may be appropriate.  Requestors MAY make 
anonymous requests and it is up to the recipient's policy to determine if such requests 
are acceptable.  If not a fault SHOULD be generated (but is not required to be returned 
for denial-of-service reasons). 

The [WS-Security] specification defines and illustrates time references in terms of the 
dateTime type defined in XML Schema.  It is RECOMMENDED that all time references use 
this type.  It is further RECOMMENDED that all references be in UTC time.  Requestors 
and receivers SHOULD NOT rely on other applications supporting time resolution finer 
than milliseconds. Implementations MUST NOT generate time instants that specify leap 
seconds.  Also, any required clock synchronization is outside the scope of this document.   

The following sections describe the basic structure of token request and response 
elements identifying the general mechanisms and most common sub-elements.  Specific 
bindings extend these elements with binding-specific sub-elements.  That is, sections 
5.1 and 5.2 should be viewed as patterns or templates on which specific bindings build. 

It should be noted that all time references use the XML Schema dateTime type and use 
universal time. 

5.1 Requesting a Security Token 
The <wst:RequestSecurityToken> element (RST) is used to request a security token 
(for any purpose).  This element SHOULD be signed by the requestor, using tokens 
contained/referenced in the request that are relevant to the request.  If using a signed 
request, the requestor MUST prove any required claims to the satisfaction of the security 
token service. 

If a parameter is specified in a request that the recipient doesn't understand, the 
recipient SHOULD fault. 

The syntax for this element is as follows: 

    <wst:RequestSecurityToken Context="..."> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestType>...</wst:RequestType> 

Page 11 of 68 



        ... 

    </wst:RequestSecurityToken> 

The following describes the attributes and elements listed in the schema overview 
above: 

/wst:RequestSecurityToken 
This is a request to have a security token issued. 

/wst:RequestSecurityToken/@Context 
This optional URI specifies an identifier/context for this request.  All subsequent 
RSTR elements relating to this request MUST carry this attribute.  This, for example, 
allows the request and subsequent responses to be correlated.  Note that no 
ordering semantics are provided; that is left to the application/transport. 

/wst:RequestSecurityToken/wst:TokenType 
This optional element describes the type of security token requested, specified as a 
URI.  That is, the type of token that will be returned in the 
<wst:RequestSecurityTokenResponse> message.  Token type URIs are typically 
defined in token profiles such as those in the OASIS WSS TC. 

/wst:RequestSecurityToken/wst:RequestType 
The mandatory RequestType element is used to indicate, using a URI, the class of 
function that is being requested.  The allowed values are defined by specific bindings 
and profiles of WS-Trust.  Frequently this URI corresponds to the [WS-Addressing] 
Action URI provided in the message header as described in the binding/profile; 
however, specific bindings can use the Action URI to provide more details on the 
semantic processing while this parameter specifies the general class of operation 
(e.g., token issuance).  This parameter is required. 

/wst:RequestSecurityToken/{any} 
This is an extensibility mechanism to allow additional elements to be added.  This 
allows requestors to include any elements that the service can use to process the 
token request.  As well, this allows bindings to define binding-specific extensions.  If 
an element is found that is not understood, the recipient SHOULD fault. 

/wst:RequestSecurityToken/@{any} 
This is an extensibility mechanism to allow additional attributes, based on schemas, 
to be added.  If an attribute is found that is not understood, the recipient SHOULD 
fault. 

5.2 Returning a Security Token 
The <wst:RequestSecurityTokenResponse> element (RSTR) is used to return a security 
token or response to a security token request. 

It should be noted that any type of parameter specified as input to a token request MAY 
be present on response in order to specify the exact parameters used by the issuer.  
Specific bindings describe appropriate restrictions on the contents of the RST and RSTR 
elements. 

In general, the returned token should be considered opaque to the requestor.  That is, 
the requestor shouldn't be required to parse the returned token.  As a result, 
information that the requestor may desire, such as token lifetimes, SHOULD be returned 
in the response.  Specifically, any field that the requestor includes SHOULD be returned.  
If an issuer doesn't want to repeat all input parameters, then, at a minimum, if the 

Page 12 of 68 



issuer chooses a value different from what was requested, the issuer SHOULD include 
the parameters that were changed. 

If a parameter is specified in a response that the recipient doesn't understand, the 
recipient SHOULD fault. 

In this specification the RSTR message is illustrated as being passed in the body of a 
message.  However, there are scenarios where the RSTR must be passed in conjunction 
with an existing application message.  In such cases the RSTR (or the RSTR collection)  
MAY be specified inside a header block.  The exact location is determined by layered 
specifications and profiles; however, the RSTR MAY be located in the <wsse:Security> 
header if the token is being used to secure the message (note that the RSTR SHOULD 
occur before any uses of the token).  The combination of which header block contains 
the RSTR and the value of the optional @Context attribute indicate how the RSTR is 
processed.  It should be noted that multiple RST elements can be specified in the header 
blocks of a message. 

It should be noted that there are cases where an RSTR is issued to a recipient who did 
not explicitly issue an RST (e.g. to propagate tokens).  In such cases, the RSTR may be 
passed in the body or in a header block. 

The syntax for this element is as follows: 

    <wst:RequestSecurityTokenResponse Context="..."> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 

        ... 

    </wst:RequestSecurityTokenResponse> 

The following describes the attributes and elements listed in the schema overview 
above: 

/wst:RequestSecurityTokenResponse 
This is the response to a security token request. 

/wst:RequestSecurityTokenResponse/@Context 
This optional URI specifies the identifier from the original request.  That is, if a 
context URI is specified on a RST, then it MUST be echoed on the corresponding 
RSTRs.  For unsolicited RSTRs (RSTRs that aren't the result of an explicit RST), this 
represents a hint as to how the recipient is expected to use this token.  No values 
are pre-defined for this usage; this is for use by specifications that leverage the WS-
Trust mechanisms. 

/wst:RequestSecurityTokenResponse/wst:TokenType 
This optional element specifies the type of security token returned. 

/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken 
This optional element is used to return the requested security token.  Normally the 
requested security token is the contents of this element but a security token 
reference MAY be used instead.   For example, if the requested security token is used 
in securing the message, then the security token is placed into the <wsse:Security> 
header (as described in [WS-Security]) and a <wsse:SecurityTokenReference> 
element is placed inside of the <wst:RequestedSecurityToken> element to 
reference the token in the <wsse:Security> header.  The response MAY contain a 
token reference where the token is located at a URI outside of the message.  In such 

Page 13 of 68 



cases the recipient is assumed to know how to fetch the token from the URI address 
or specified endpoint reference.  It should be noted that when the token is not 
returned as part of the message it cannot be secured, so a secure communication 
mechanism SHOULD be used to obtain the token. 

/wst:RequestSecurityTokenResponse/{any} 
This is an extensibility mechanism to allow additional elements to be added.  If an 
element is found that is not understood, the recipient SHOULD fault. 

/wst:RequestSecurityTokenResponse/@{any} 
This is an extensibility mechanism to allow additional attributes, based on schemas, 
to be added.  If an attribute is found that is not understood, the recipient SHOULD 
fault. 

5.3 Binary Secrets 
It should be noted that in some cases elements include a key that is not encrypted.  
Consequently, the <xenc:EncryptedData> cannot be used.  Instead, the 
<wst:BinarySecret> element can be used.  This SHOULD only be used when the 
message is otherwise protected (e.g. transport security is used or the containing 
element is encrypted).  This element contains a base64 encoded value that represents 
an arbitrary octet sequence of a secret (or key).  The general syntax of this element is 
as follows (note that the ellipses below represent the different containers in which this 
element may appear, for example, a <wst:Entropy> or <wst:RequestedProofToken> 
element): 

.../wst:BinarySecret 
This element contains a base64 encoded binary secret (or key).  This can be either a 
symmetric key, the private portion of an asymmetric key, or any data represented as 
binary octets. 

.../wst:BinarySecret/@Type 
This optional attribute indicates the type of secret being encoded.  The pre-defined 
values are listed in the table below: 

URI Meaning 

http://schemas.xmlsoap.org/ws/2005/
02/trust/AsymmetricKey

The private portion of a public key 
token is returned – this URI 
assumes both parties agree on the 
format of the octets; other bindings 
and profiles MAY define additional 
URIs with specific formats 

http://schemas.xmlsoap.org/ws/2005/
02/trust/SymmetricKey

A symmetric key token is returned 
(default) 

http://schemas.xmlsoap.org/ws/2005/
02/trust/Nonce

A raw nonce value (typically passed 
as entropy or key material) 

.../wst:BinarySecret/@{any} 
This is an extensibility mechanism to allow additional attributes, based on schemas, 
to be added. If an attribute is found that is not understood, the recipient SHOULD 
fault. 

Page 14 of 68 

http://schemas.xmlsoap.org/ws/2004/12/security/trust/AsymmetricKey
http://schemas.xmlsoap.org/ws/2004/12/security/trust/AsymmetricKey
http://schemas.xmlsoap.org/ws/2004/12/security/trust/SymmetricKey
http://schemas.xmlsoap.org/ws/2004/12/security/trust/SymmetricKey
http://schemas.xmlsoap.org/ws/2004/12/security/trust/Nonce
http://schemas.xmlsoap.org/ws/2004/12/security/trust/Nonce


5.4 Composition 
The sections below, as well as other documents, describe a set of bindings using the 
model framework described in the above sections.  Each binding describes the amount 
of extensibility and composition with other parts of WS-Trust that is permitted.  As well, 
profile documents MAY further restrict what can be specified in a usage of a binding. 

6. Issuance Binding 
Using the token request framework, this section defines bindings for requesting security 
tokens to be issued: 

Issue – Based on the credential provided/proven in the request, a new token is 
issued, possibly with new proof information. 

For this binding, the following [WS-Addressing] actions are defined to enable specific 
processing context to be conveyed to the recipient: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Issue 

    http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Issue 

For this binding, the <wst:RequestType> element uses the following URI: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/Issue 

The mechanisms defined in this specification apply to both symmetric and asymmetric 
keys.  It should be noted that in practice, asymmetric key usage often differs as it is 
common to reuse existing asymmetric keys rather than regenerate due to the time cost 
and desire to map to a common public key.  In such cases a request might be made for 
an asymmetric token providing the public key and proving ownership of the private key.  
The public key is then used in the issued token.   

As an example, a Kerberos KDC could provide the services defined in this specification to 
make tokens available; similarly, so can a public key infrastructure.  In such cases, the 
issuing authority is the security token service.  A public key directory is not really a 
security token service per se; however, such a service MAY implement token retrieval as 
a form of issuance.  As well, it is possible to bridge environments (security technologies) 
using PKI for authentication or bootstrapping to a symmetric key. 

This binding provides a general token issuance action that can be used for any type of 
token being requested.  Other bindings MAY use separate actions if they have 
specialized semantics. 

This binding supports the optional use of exchanges during the token acquisition process 
as well as the optional use of the key extensions described in a later section.  
Subsequent profiles are needed to describe specific behaviors (and exclusions) when 
different combinations are used (e.g. multiple simultaneous exchanges). 

6.1 Requesting a Security Token 
When requesting a security token to be issued, the following optional elements MAY be 
included in the request and MAY be provided in the response.  The syntax for these 
elements is as follows (note that the base elements described above are included here 
italicized for completeness): 

    <wst:RequestSecurityToken> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestType>...</wst:RequestType> 

Page 15 of 68 



        ... 

        <wsp:AppliesTo>...</wsp:AppliesTo> 

        <wst:Claims Dialect="...">...</wst:Claims> 

        <wst:Entropy> 

              <wst:BinarySecret>...</wst:BinarySecret> 

         </wst:Entropy> 

        <wst:Lifetime> 

            <wsu:Created>...</wsu:Created> 

            <wsu:Expires>...</wsu:Expires> 

        </wst:Lifetime> 

    </wst:RequestSecurityToken> 

The following describes the attributes and elements listed in the schema overview 
above: 

/wst:RequestSecurityToken/wst:TokenType 
If this optional element is not specified in an issue request, it is RECOMMENDED that 
the optional element <wsp:AppliesTo> be used to indicate the target where this 
token will be used (similar to the Kerberos target service model).  This assumes that 
a token type can be inferred from the target scope specified.  That is, either the 
<wst:TokenType> or the <wsp:AppliesTo> element SHOULD be defined within a 
request. If both the <wst:TokenType> and <wsp:AppliesTo> elements are defined, 
the <wsp:AppliesTo> element takes precedence (for the current request only) in 
case the target scope requires a specific type of token.   

/wst:RequestSecurityToken/wsp:AppliesTo 
This optional element specifies the scope for which this security token is desired – for 
example, the service(s) to which this token applies.  Refer to [WS-PolicyAttachment] 
for more information.  Note that either this element or the <wst:TokenType> 
element SHOULD be defined in a <wst:RequestSecurityToken> message.  In the 
situation where BOTH fields have values, the <wsp:AppliesTo> field takes 
precedence.  This is because the issuing service is more likely to know the type of 
token to be used for the specified scope than the requestor (and because returned 
tokens should be considered opaque to the requestor). 

/wst:RequestSecurityToken/wst:Claims 
This optional element requests a specific set of claims.  In most cases, this element 
contains claims identified as required in a service's policy. Refer to [WS-Policy] for 
examples of how a service uses policy to specify claim requirements.  The @Dialect 
attribute specifies a URI to indicate the syntax of the claims.  No URIs are 
predefined; refer to profiles and other specifications to define these URIs. 

/wst:RequestSecurityToken/wst:Entropy 
This optional element allows a requestor to specify entropy that is to be used in 
creating the key.  The value of this element SHOULD be either a 
<xenc:EncryptedKey> or <wst:BinarySecret> depending on whether or not the key 
is encrypted.  Secrets SHOULD be encrypted unless the transport/channel is already 
providing encryption. 

/wst:RequestSecurityToken/wst:Entropy/wst:BinarySecret 

Page 16 of 68 



This optional element specifies a base64 encoded sequence of octets representing 
the requestor's entropy.  The value can contain either a symmetric or the private key 
of an asymmetric key pair, or any suitable key material.  The format is assumed to 
be understood by the requestor because the value space may be (a) fixed, (b) 
indicated via policy, (c) inferred from the indicated token aspects and/or algorithms, 
or (d) determined from the returned token. (See Section 5.3) 

/wst:RequestSecurityToken/wst:Lifetime 
This optional element is used to specify the desired valid time range (time window 
during which the token is valid for use) for the returned security token.  That is, to 
request a specific time interval for using the token.  The issuer is not obligated to 
honor this range – they may return a more (or less) restrictive interval.  It is 
RECOMMENDED that the issuer return this element with issued tokens (in the RSTR) 
so the requestor knows the actual validity period without having to parse the 
returned token. 

/wst:RequestSecurityToken/wst:Lifetime/wsu:Created 
This optional element represents the creation time of the security token.  Within the 
SOAP processing model, creation is the instant that the infoset is serialized for 
transmission.  The creation time of the token SHOULD NOT differ substantially from 
its transmission time.  The difference in time should be minimized.  If this time 
occurs in the future then this is a request for a post-dated token.  If this attribute 
isn't specified, then the current time is used as an initial period. 

/wst:RequestSecurityToken/wst:Lifetime/wsu:Expires 
This optional element specifies an absolute time representing the upper bound on the 
validity time period of the requested token.  If this attribute isn't specified, then the 
service chooses the lifetime of the security token. A Fault code 
(wsu:MessageExpired) is provided if the recipient wants to inform the requestor that 
its security semantics were expired.  A service MAY issue a Fault indicating the 
security semantics have expired. 

The following is a sample request.  In this example, a username token is used as the 
basis for the request as indicated by the use of that token to generate the signature.  
The username (and password) is encrypted for the recipient and a reference list element 
is added.  The <ds:KeyInfo> element refers to a <wsse:UsernameToken> element that 
has been encrypted to protect the password (note that the token has the wsu:Id of 
"myToken" prior to encryption).  The request is for a custom token type to be returned.   

<S11:Envelope xmlns:S11="..." xmlns:wsu="..." xmlns:wsse="..." 

        xmlns:xenc="..." xmlns:wst="..."> 

    <S11:Header> 

        ... 

        <wsse:Security> 

            <xenc:ReferenceList>...</xenc:ReferenceList> 

            <xenc:EncryptedData Id="encUsername">...</xenc:EncryptedData> 

            <ds:Signature xmlns:ds="..."> 

                ... 

             <ds:KeyInfo> 

                <wsse:SecurityTokenReference> 

Page 17 of 68 



                    <wsse:Reference URI="#myToken"/> 

                </wsse:SecurityTokenReference> 

             </ds:KeyInfo> 

            </ds:Signature> 

        </wsse:Security> 

        ... 

    </S11:Header> 

    <S11:Body wsu:Id="req"> 

        <wst:RequestSecurityToken> 

            <wst:TokenType> 

                http://example.org/mySpecialToken 

            </wst:TokenType> 

            <wst:RequestType> 

                http://schemas.xmlsoap.org/ws/2005/02/trust/Issue 

            </wst:RequestType> 

        </wst:RequestSecurityToken> 

    </S11:Body> 

</S11:Envelope> 

6.2 Returning a Security Token 
When returning a security token, the following optional elements MAY be included in the 
response.  The syntax for these elements is as follows (note that the base elements 
described above are included here italicized for completeness): 

    <wst:RequestSecurityTokenResponse>  

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 

        ... 

        <wsp:AppliesTo>...</wsp:AppliesTo> 

        <wst:RequestedAttachedReference> 

        ... 

        </wst:RequestedAttachedReference> 

        <wst:RequestedUnattachedReference> 

        ... 

       </wst:RequestedUnattachedReference> 

        <wst:RequestedProofToken>...</wst:RequestedProofToken> 

        <wst:Entropy> 

            <wst:BinarySecret>...</wst:BinarySecret> 

Page 18 of 68 



        </wst:Entropy> 

        <wst:Lifetime>...</wst:Lifetime> 

    </wst:RequestSecurityTokenResponse> 

The following describes the attributes and elements listed in the schema overview 
above: 

/wst:RequestSecurityTokenResponse/wsp:AppliesTo 
This optional element specifies the scope to which this security token applies.  Refer 
to [WS-PolicyAttachment] for more information.  Note that if an <wsp:AppliesTo> 
was specified in the request, the same scope SHOULD be returned in the response (if 
a <wsp:AppliesTo> is returned). 

/wst:RequestSecurityTokenResponse/wst:RequestedSecurityToken 
This optional element is used to return the requested security token.  This element is 
optional, but it is REQUIRED that at least one of <wst:RequestedSecurityToken> or 
<wst:RequestedProofToken> be returned unless there is an error or part of an on-
going message exchange (e.g. negotiation).  If returning more than one security 
token see section 6.3, Returning Multiple Security Tokens. 

/wst:RequestSecurityTokenResponse/wst:RequestedAttachedReference 
Since returned tokens are considered opaque to the requestor, this optional element 
is specified to indicate how to reference the returned token when that token doesn't 
support references using URI fragments (XML ID).  This element contains a 
<wsse:SecurityTokenReference> element that can be used verbatim to reference 
the token (when the token is placed inside a message).  Typically tokens allow the 
use of wsu:Id so this element isn't required. Note that a token MAY support multiple 
reference mechanisms; this indicates the issuer’s preferred mechanism.  When 
encrypted tokens are returned, this element is not needed since the 
<xenc:EncryptedData> element supports an ID reference. If this element is not 
present in the RSTR then the recipient can assume that the returned token (when 
present in a message) supports references using URI fragments. 

/wst:RequestSecurityTokenResponse/wst:RequestedUnattachedReference 
In some cases tokens need not be present in the message.  This optional element is 
specified to indicate how to reference the token when it is not placed inside the 
message.  This element contains a <wsse:SecurityTokenReference> element that 
can be used verbatim to reference the token (when the token is not placed inside a 
message) for replies. Note that a token MAY support multiple external reference 
mechanisms; this indicates the issuer’s preferred mechanism. 

/wst:RequestSecurityTokenResponse/wst:RequestedProofToken 
This optional element is used to return the proof-of-possession token associated with 
the requested security token.  Normally the proof-of-possession token is the 
contents of this element but a security token reference MAY be used instead.  The 
token (or reference) is specified as the contents of this element. For example, if the 
proof-of-possession token is used as part of the securing of the message, then it is 
placed in the <wsse:Security> header and a <wsse:SecurityTokenReference> 
element is used inside of the <wst:RequestedProofToken> element to reference the 
token in the <wsse:Security> header.  This element is optional, but it is REQUIRED 
that at least one of <wst:RequestedSecurityToken> or 
<wst:RequestedProofToken> be returned unless there is an error.  

/wst:RequestSecurityTokenResponse/wst:Entropy 

Page 19 of 68 



This optional element allows an issuer to specify entropy that is to be used in 
creating the key.  The value of this element SHOULD be either a 
<xenc:EncryptedKey> or <wst:BinarySecret> depending on whether or not the key 
is encrypted (it SHOULD be unless the transport/channel is already encrypted). 

/wst:RequestSecurityTokenResponse/wst:Entropy/wst:BinarySecret 
This optional element specifies a base64 encoded sequence of octets represent the 
responder's entropy. (See Section 5.3) 

/wst:RequestSecurityTokenResponse/wst:Lifetime 
This optional element specifies the lifetime of the issued security token.  If omitted 
the lifetime is unspecified (not necessarily unlimited).  It is RECOMMENDED that if a 
lifetime exists for a token that this element be included in the response. 

6.2.1 wsp:AppliesTo in RST and RSTR 

Both the requestor and the issuer can specify a scope for the issued token using the 
<wsp:AppliesTo> element. If a token issuer cannot provide a token with a scope that is 
at least as broad as that requested by the requestor then it SHOULD generate a fault. 
This section defines some rules for interpreting the various combinations of provided 
scope: 

• If neither the requestor nor the issuer specifies a scope then the scope of the 
issued token is implied. 

• If the requestor specifies a scope and the issuer does not then the scope of the 
token is assumed to be that specified by the requestor. 

• If the requestor does not specify a scope and the issuer does specify a scope 
then the scope of the token is as defined by the issuers scope 

• If both requestor and issuer specify a scope then there are two possible 
outcomes: 

o If both the issuer and requestor specify the same scope then the issued 
token has that scope. 

o If the issuer specifies a wider scope than the requestor then the issued 
token has the scope specified by the issuer. 

The following table summarizes the above rules: 

Requestor wsp:AppliesTo Issuer wsp:AppliesTo Results 

Absent Absent OK. Implied scope. 

Present Absent OK. Issued token has scope 
specified by requestor. 

Absent Present OK. Resulting token has 
scope specified by issuer. 

Present Present and matches 
Requestor 

OK. 

Present Present and specifies a 
scope greater than specified 
by the requestor 

OK. 

Page 20 of 68 



6.2.2 Requested References 

The token issuer can optionally provide <wst:RequestedAttachedReference> and/or 
<wst:RequestedUnattachedReference> elements in the RSTR. It is assumed that all 
token types can be referred to directly when present in a message. This section outlines 
the expected behaviour on behalf of clients and servers with respect to various 
permutations: 

• If a <wst:RequestedAttachedReference> element is NOT returned in the RSTR 
then the client SHOULD assume that the token can be referenced by ID. 
Alternatively, the client MAY use token-specific knowledge to construct an STR. 

• If a <wst:RequestedAttachedReference> element is returned in the RSTR then 
the token cannot be referred to by ID. The supplied STR MUST be used to refer to 
the token. 

• If a <wst:RequestedUnattachedReference> element is returned then the server 
MAY reference the token using the supplied STR when sending responses back to 
the client. Thus the client MUST be prepared to resolve the supplied STR to the 
appropriate token. Note: the server SHOULD NOT send the token back to the 
client as the token is often tailored specifically to the server (i.e. it may be 
encrypted for the server). References to the token in subsequent messages, 
whether sent by the client or the server, that omit the token MUST use the 
supplied STR. 

6.2.3 Keys and Entropy 

The keys resulting from a request are determined in one of three ways: specific, partial, 
and omitted.   

• In the case of specific keys, a <wst:RequestedProofToken> element is included 
in the response which indicates the specific key(s) to use unless the key was 
provided by the requestor (in which case there is no need to return it).   

• In the case of partial, the <wst:Entropy> element is included in the response, 
which indicates partial key material from the issuer (not the full key) that is 
combined (by each party) with the requestor's entropy to determine the resulting 
key(s).  In this case a <wst:ComputedKey> element is returned inside the 
<wst:RequestedProofToken> to indicate how the key is computed. 

• In the case of omitted, an existing key is used or the resulting token is not 
directly associated with a key. 

The decision as to which path to take is based on what the requestor provides, what the 
issuer provides, and the issuer's policy. 

• If the requestor does not provide entropy or issuer rejects the requestor's 
entropy, a proof-of-possession token MUST be returned with an issuer-provided 
key.  

• If the requestor provides entropy and the responder doesn't (issuer uses the 
requestor's key), then a proof-of-possession token need not be returned. 

• If both the requestor and the issuer provide entropy, then the partial form is 
used.  Ideally both entropies are specified as encrypted values and the resultant 
key is never used (only keys derived from it are used).  As noted above, the 
<wst:ComputedKey> element is returned inside the <wst:RequestedProofToken> 
to indicate how the key is computed. 

The following table illustrates the rules described above: 

Page 21 of 68 



Requestor Issuer Results 

Uses requestor entropy as 
key 

No proof-of-possession token 
is returned. 

Provides entropy 

No keys returned, key(s) 
derived using entropy from 
both sides according to method 
identified in response 

Provide Entropy 

Issues own key (rejects 
requestor's entropy) 

Proof-of-possession token 
contains issuer's key(s) 

Issues own key 
Proof-of-possession token 
contains issuer's key(s) No Entropy 

provided 
Does not issue key No proof-of-possession token 

6.2.4 Returning Computed Keys 

As previously described, in some scenarios the key(s) resulting from a token request are 
not directly returned and must be computed.  One example of this is when both parties 
provide entropy and are combined to make the shared secret.  To indicate a computed 
key, the <wst:ComputedKey> element is returned inside the 
<wst:RequestedProofToken> to indicate how the key is computed.  The following is a 
syntax overview of the <wst:ComputedKey> element: 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedProofToken> 

            <wst:ComputedKey>...</wst:ComputedKey> 

        </wst:RequestedProofToken> 

    </wst:RequestSecurityTokenResponse> 

... 

The following describes the attributes and elements listed in the schema overview 
above: 

/wst:RequestSecurityTokenResponse/wst:RequestedProofToken/wst:ComputedKey 
The value of this element is a URI describing how to compute the key.  While this 
can be extended by defining new URIs in other bindings and profiles, the following 
URI pre-defines one computed key mechanism:  

URI Meaning 

http://schemas.xmlsoap.org/ws/2005/02/
trust/CK/PSHA1 

The key is computed using P_SHA1 
from the TLS specification to generate 
a bit stream using entropy from both 
sides.  The exact form is:  
   key = P_SHA1 (EntREQ, EntRES)  

Page 22 of 68 



6.2.5 Sample Response with Encrypted Secret 

The following is a sample security token response.  In this example the token requested 
in section 6.1 is returned.  Additionally a proof-of-possession token element is returned 
containing the secret key associated with the <wst:RequestedSecurityToken> 
encrypted for the requestor (note that this assumes that the requestor has a shared 
secret with the issuer or a public key). 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xyz:CustomToken xmlns:xyz="..."> 

                ... 

            </xyz:CustomToken> 

        </wst:RequestedSecurityToken> 

        <wst:RequestedProofToken> 

            <xenc:EncryptedKey Id="newProof"> 

                ... 

            </xenc:EncryptedKey> 

        </wst:RequestedProofToken> 

    </wst:RequestSecurityTokenResponse> 

... 

6.2.6 Sample Response with Unencrypted Secret 

The example below is an alternative form where the secret is passed in the clear 
because the transport is providing confidentiality: 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xyz:CustomToken xmlns:xyz="..."> 

                ... 

            </xyz:CustomToken> 

        </wst:RequestedSecurityToken> 

        <wst:RequestedProofToken> 

            <wst:BinarySecret>...</wst:BinarySecret> 

        </wst:RequestedProofToken> 

    </wst:RequestSecurityTokenResponse> 

... 

Page 23 of 68 



6.2.7 Sample Response with Token Reference 

If the returned token doesn't allow the use of the wsu:Id attribute, then a 
<wst:RequestedTokenReference> is returned as illustrated below.  In this example, the 
returned token has a URI which is referenced. 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xyz:CustomToken ID="urn:fabrikam123:5445" xmlns:xyz="..."> 

                ... 

            </xyz:CustomToken> 

        </wst:RequestedSecurityToken> 

        <wst:RequestedTokenReference> 

            <wsse:SecurityTokenReference> 

               <wsse:Reference URI="urn:fabrikam123:5445"/> 

            </wsse:SecurityTokenReference> 

        </wst:RequestedTokenReference> 

        ... 

    </wst:RequestSecurityTokenResponse> 

... 

In the example above, the recipient may place the returned custom token directly into a 
message and include a signature using the provided proof-of-possession token.  The 
specified reference is then placed into the <ds:KeyInfo> of the signature and directly 
references the included token without requiring the requestor to understand the details 
of the custom token format. 

6.2.8 Sample Response without Proof-of-Possession Token 

The example below illustrates a response that doesn't include a proof-of-possession 
token.  For example, if the basis of the request were a public key token and another 
public key token is returned with the same public key, the proof-of-possession token 
from the original token is reused (no new proof-of-possession token is required). 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xyz:CustomToken xmlns:xyz="..."> 

                ... 

            </xyz:CustomToken> 

        </wst:RequestedSecurityToken> 

    </wst:RequestSecurityTokenResponse> 

... 

Page 24 of 68 



6.3 Returning Multiple Security Tokens 
In some cases a response MAY provide multiple tokens.  These can be divided into two 
cases: zero or one proof-of-possession tokens and responses with more than one proof-
of-possession tokens.   

6.3.1 Zero or One Proof-of-Possession Token Case 

In the zero or single proof-of-possession token case, a primary token and one or more 
tokens are returned.  The returned tokens either use the same proof-of-possession 
token (one is returned), or no proof-of-possession token is returned.  The tokens are 
returned (one each) in the response.  The following example illustrates this case.  In this 
example a supporting authorization token is returned that has no separate proof-of-
possession token as it is secured using the same proof-of-possession token that was 
returned. 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xyz:CustomToken xmlns:xyz="..."> 

                ... 

            </xyz:CustomToken> 

        </wst:RequestedSecurityToken> 

        <wst:RequestedProofToken> 

            <xenc:EncryptedKey Id="newProof"> 

                ... 

            </xenc:EncryptedKey> 

        </wst:RequestedProofToken> 

    </wst:RequestSecurityTokenResponse> 

... 

6.3.2 More Than One Proof-of-Possession Tokens Case 

The second case is where multiple security tokens are returned that have separate 
proof-of-possession tokens.  As a result, the proof-of-possession tokens, and possibly 
lifetime and other key parameters elements, may be different.  To address this scenario, 
the body MAY be specified using the syntax illustrated below: 

    <wst:RequestSecurityTokenResponseCollection> 

        <wst:RequestSecurityTokenResponse> 

            ... 

        </wst:RequestSecurityTokenResponse> 

        <wst:RequestSecurityTokenResponse>  

            ... 

        </wst:RequestSecurityTokenResponse> 

        ... 

Page 25 of 68 



    </wst:RequestSecurityTokenResponseCollection> 

The following describes the attributes and elements listed in the schema overview 
above: 

/wst:RequestSecurityTokenResponseCollection 
This element is used to provide multiple RSTR responses, each of which has separate 
key information. 

/wst:RequestSecurityTokenResponseCollection/wst:RequestSecurityTokenResponse 
Two or more RSTR elements are returned in the collection. 

/wst:RequestSecurityTokenResponseCollection/@{any} 
This is an extensibility mechanism to allow additional attributes, based on schemas, 
to be added. 

The following example illustrates a response that includes multiple tokens each, in a 
separate RSTR, each with their own proof-of-possession token. 

... 

    <wst:RequestSecurityTokenResponseCollection> 

        <wst:RequestSecurityTokenResponse> 

            <wst:RequestedSecurityToken> 

                <xyz:CustomToken xmlns:xyz="..."> 

                    ... 

                </xyz:CustomToken> 

            </wst:RequestedSecurityToken> 

            <wst:RequestedProofToken> 

                <xenc:EncryptedKey Id="newProofA"> 

                    ... 

                </xenc:EncryptedKey> 

            </wst:RequestedProofToken> 

        </wst:RequestSecurityTokenResponse> 

        <wst:RequestSecurityTokenResponse> 

            <wst:RequestedSecurityToken> 

                <abc:CustomToken xmlns:abc="..."> 

                    ... 

                </abc:CustomToken> 

            </wst:RequestedSecurityToken> 

            <wst:RequestedProofToken> 

                <xenc:EncryptedKey Id="newProofB> 

                    ... 

                </xenc:EncryptedKey> 

            </wst:RequestedProofToken> 

Page 26 of 68 



        </wst:RequestSecurityTokenResponse> 

    </wst:RequestSecurityTokenResponseCollection> 

... 

6.4. Returning Security Tokens in Headers 
In certain situations it is useful to issue one or more security tokens as part of a protocol 
other than RST/RSTR. This typically requires that the tokens be passed in a SOAP 
header. The tokens present in that element can then be referenced from elsewhere in 
the message. This section defines a specific header element, whose type is the same as 
that of the <wst:RequestSecurityTokenCollection> element (see Section 6.3), that 
can be used to carry issued tokens (and associated proof tokens, references etc.) in a 
message.  

... 

  <wst:IssuedTokens> 

    <wst:RequestSecurityTokenResponse> 

    ... 

    </wst:RequestSecurityTokenResponse>+ 

  </wst:IssuedTokens> 

The following describes the attributes and elements listed in the schema overview 
above: 

/wst:IssuedTokens 

This header element carries one or more issued security tokens. 

/wst:IssuedTokens/wst:RequestSecurityTokenResponse 

This element MUST appear at least once. Its meaning and semantics are as defined in 
Section 6.2. 

/wst:IssuedTokens/@{any} 
This is an extensibility mechanism to allow additional attributes, based on schemas, 
to be added. 

There MAY be multiple instances of the <wst:IssuedTokens> header in a given 
message. Such instances MAY be targeted at the same actor/role. Intermediaries MAY 
add additional <wst:IssuedTokens> header elements to a message. Intermediaries 
SHOULD NOT modify any <wst:IssuedTokens> header already present in a message.  

It is RECOMMENDED that the <wst:IssuedTokens> header be signed to protect the 
integrity of the issued tokens and of the issuance itself. If confidentiality protection of 
the <wst:IssuedTokens> header is required then the entire header MUST be encrypted 
using the <wsse11:EncryptedHeader> construct. This helps facilitate re-issuance by the 
receiving party as that party can re-encrypt the entire header for another party rather 
than having to extract and re-encrypt portions of the header. 

The following example illustrates a response that includes multiple <wst:IssuedTokens> 
headers. 

<S:Envelope> 

  <S:Header> 

    <wst:IssuedTokens> 

Page 27 of 68 



      <wst:RequestSecurityTokenResponse> 

        <wsp:AppliesTo> 

          <x:SomeContext1 /> 

        </wsp:AppliesTo> 

        <wst:RequestedSecurityToken> 

        ... 

        </wst:RequestedSecurityToken> 

        ... 

      </wst:RequestSecurityTokenResponse> 

      <wst:RequestSecurityTokenResponse> 

        <wsp:AppliesTo> 

          <x:SomeContext1 /> 

        </wsp:AppliesTo> 

        <wst:RequestedSecurityToken> 

        ... 

        </wst:RequestedSecurityToken> 

        ... 

      </wst:RequestSecurityTokenResponse>       

    </wst:IssuedTokens> 

    <wst:IssuedTokens s:role='http://example.org/somerole' > 

      <wst:RequestSecurityTokenResponse> 

        <wsp:AppliesTo> 

            <x:SomeContext2 /> 

        </wsp:AppliesTo> 

        <wst:RequestedSecurityToken> 

        ... 

        </wst:RequestedSecurityToken> 

        ... 

      </wst:RequestSecurityTokenResponse> 

    </wst:IssuedTokens> 

  </S:Header> 

  <S:Body> 

  ... 

  </S:Body> 

</S:Envelope> 

7. Renewal Binding 
Using the token request framework, this section defines bindings for requesting security 
tokens to be renewed: 

Renew – A previously issued token with expiration is presented (and possibly 
proven) and the same token is returned with new expiration semantics. 

For this binding, the following actions are defined to enable specific processing context 
to be conveyed to the recipient: 

Page 28 of 68 



    http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Renew 

    http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Renew 

For this binding, the <RequestType> element uses the following URI: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/Renew 

For this binding the token to be renewed is identified in the <RenewTarget> element and 
the optional <Lifetime> element MAY be specified to request a specified renewal 
duration. 

Other extensions MAY be specified in the request (and the response), but the key 
semantics (size, type, algorithms, scope, etc.) MUST NOT be altered during renewal.  
Token services MAY use renewal as an opportunity to rekey, so the renewal responses 
MAY include a new proof-of-possession token as well as entropy and key exchange 
elements. 

The request MUST prove authorized use of the token being renewed unless the recipient 
trusts the requestor to make third-party renewal requests.  In such cases, the third-
party requestor MUST prove its identity to the issuer so that appropriate authorization 
occurs.  

The original proof information SHOULD be proven during renewal. 

The renewal binding allows the use of exchanges during the renewal process.  
Subsequent profiles MAY define restriction around the usage of exchanges. 

During renewal, all key bearing tokens used in the renewal request MUST have an 
associated signature.  All non-key bearing tokens MUST be signed.  Signature 
confirmation is RECOMMENDED on the renewal response. 

The renewal binding also defines several extensions to the request and response 
elements.  The syntax for these extension elements is as follows (note that the base 
elements described above are included here italicized for completeness): 

    <wst:RequestSecurityToken> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestType>...</wst:RequestType> 

        ... 

        <wst:RenewTarget>...</wst:RenewTarget> 

        <wst:AllowPostdating/> 

        <wst:Renewing Allow=... OK=.../> 

    </wst:RequestSecurityToken> 

/wst:RequestSecurityToken/wst:RenewTarget 
This required element identifies the token being renewed.  This MAY contain a 
<wsse:SecurityTokenReference> pointing at the token to be renewed or it MAY 
directly contain the token to be renewed. 

/wst:RequestSecurityToken/wst:AllowPostdating 
This optional element indicates that returned tokens should allow requests for 
postdated tokens.  That is, this allows for tokens to be issued that are not 
immediately valid (e.g., a token that can be used the next day). 

/wst:RequestSecurityToken/wst:Renewing 

Page 29 of 68 



This optional element is used to specify renew semantics for types that support this 
operation. 

/wst:RequestSecurityToken/wst:Renewing/@Allow 
This optional Boolean attribute is used to request a renewable token.  If not 
specified, the default value is true.  A renewable token is one whose lifetime can be 
extended.  This is done using a renewal request.  The recipient MAY allow renewals 
without demonstration of authorized use of the token or they MAY fault.

/wst:RequestSecurityToken/wst:Renewing/@OK 
This optional Boolean attribute is used to indicate that a renewable token is 
acceptable if the requested duration exceeds the limit of the issuance service.  That 
is, if true then tokens can be renewed after their expiration.  It should be noted that 
the token is NOT valid after expiration for any operation except renewal.  The default 
for this attribute is false.  It NOT RECOMMENDED to use this as it can leave you open 
to certain types of security attacks.  Issuers MAY restrict the period after expiration 
during which time the token can be renewed.  This window is governed by the 
issuer's policy. 

The following example illustrates a request for a custom token that can be renewed. 

    <wst:RequestSecurityToken> 

        <wst:TokenType> 

            http://example.org/mySpecialToken 

        </wst:TokenType> 

        <wst:RequestType> 

            http://schemas.xmlsoap.org/ws/2005/02/trust/Issue 

        </wst:RequestType> 

        <wst:Renewing/> 

    </wst:RequestSecurityToken> 

The following example illustrates a subsequent renewal request and response (note that 
for brevity only the request and response are illustrated).  Note that the response 
includes an indication of the lifetime of the renewed token. 

    <wst:RequestSecurityToken> 

        <wst:TokenType> 

            http://example.org/mySpecialToken 

        </wst:TokenType> 

        <wst:RequestType> 

            http://schemas.xmlsoap.org/ws/2005/02/trust/Renew 

        </wst:RequestType> 

        <wst:RenewTarget> 

            ... reference to previously issued token ... 

        </wst:RenewTarget> 

    </wst:RequestSecurityToken> 

Page 30 of 68 



 

    <wst:RequestSecurityTokenResponse> 

        <wst:TokenType> 

            http://example.org/mySpecialToken 

        </wst:TokenType> 

        <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 

        <wst:Lifetime>...</wst:Lifetime> 

        ... 

    </wst:RequestSecurityTokenResponse> 

8. Cancel Binding 
Using the token request framework, this section defines bindings for requesting security 
tokens to be cancelled: 

Cancel – When a previously issued token is no longer needed, the Cancel binding 
can be used to cancel the token, terminating its use. 

For this binding, the following actions are defined to enable specific processing context 
to be conveyed to the recipient: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Cancel 

    http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Cancel 

For this binding, the <RequestType> element uses the following URI: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/Cancel 

Extensions MAY be specified in the request (and the response), but the semantics are 
not defined by this binding. 

The request MUST prove authorized use of the token being cancelled unless the recipient 
trusts the requestor to make third-party cancel requests.  In such cases, the third-party 
requestor MUST prove its identity to the issuer so that appropriate authorization occurs.  

In a cancel request, all key bearing tokens specified MUST have an associated signature.  
All non-key bearing tokens MUST be signed.  Signature confirmation is RECOMMENDED 
on the closure response. 

A cancelled token is no longer valid for authentication and authorization usages. 

On success a cancel response is returned.  This is an RSTR message with the 
<wst:RequestedTokenCancelled> element in the body.  On failure, a Fault is raised.  It 
should be noted that the cancel RSTR is informational.  That is, the security token is 
cancelled once the cancel request is processed. 

The syntax of the request is as follows: 

    <wst:RequestSecurityToken> 

        <wst:RequestType>...</wst:RequestType> 

        ... 

        <wst:CancelTarget>...</wst:CancelTarget> 

    </wst:RequestSecurityToken> 

/wst:RequestSecurityToken/wst:CancelTarget 

Page 31 of 68 



This required element identifies the token being cancelled.  Typically this contains a 
<wsse:SecurityTokenReference> pointing at the token, but it could also carry the 
token directly. 

The following example illustrates a request to cancel a custom token. 

<S11:Envelope> 

  <S11:Header> 

    <wsse:Security> 

      ... 

    </wsse:Security> 

  </S11:Header> 

  <S11:Body> 

    <wst:RequestSecurityToken> 

        <wst:RequestType> 

            http://schemas.xmlsoap.org/ws/2005/02/trust/Cancel 

        </wst:RequestType> 

        <wst:CancelTarget> 

            ... 

        </wst:CancelTarget> 

    </wst:RequestSecurityToken> 

  </S11:Body> 

</S11:Envelope> 

 

<S11:Envelope> 

  <S11:Header> 

    <wsse:Security> 

      ... 

    </wsse:Security> 

  </S11:Header> 

  <S11:Body> 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedTokenCancelled/> 

    </wst:RequestSecurityTokenResponse> 

  </S11:Body> 

</S11:Envelope> 

Page 32 of 68 



9. Validation Binding 
Using the token request framework, this section defines bindings for requesting security 
tokens to be validated: 

Validate – The validity of the specified security token is evaluated and a result is 
returned.  The result may be a status, a new token, or both. 

It should be noted that for this binding, a SOAP Envelope MAY be specified as a "security 
token" if the requestor desires the envelope to be validated.  In such cases the recipient 
SHOULD understand how to process a SOAP envelope and adhere to SOAP processing 
semantics (e.g., mustUnderstand) of the version of SOAP used in the envelope.  
Otherwise, the recipient SHOULD fault. 

For this binding, the following actions are defined to enable specific processing context 
to be conveyed to the recipient: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/RST/Validate 

    http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Validate 

For this binding, the <RequestType> element contains the following URI: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/Validate 

The request provides a token upon which the request is based and optional tokens.  As 
well, the optional <wst:TokenType> element in the request can indicate desired type 
response token.  This may be any supported token type or it may be the following URI 
indicating that only status is desired: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Status 

For some use cases a status token is returned indicating the success or failure of the 
validation.  In other cases an authorization token MAY be returned.  This binding 
assumes that the validation requestor and provider are known to each other and that 
the general issuance parameters beyond requesting a token type, which is optional, are 
not needed (note that other bindings and profiles could define different semantics). 

For this binding an applicability scope (e.g., <wsp:AppliesTo>) need not be specified.  
It is assumed that the applicability of the validation response relates to the provided 
information (e.g. security token) as understood by the issuing service. 

The validation binding does not allow the use of exchanges. 

The RSTR for this binding carries the following element even if a token is returned (note 
that the base elements described above are included here italicized for completeness): 

    <wst:RequestSecurityToken> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestType>...</wst:RequestType> 

        ... 

    </wst:RequestSecurityToken> 

 

    <wst:RequestSecurityTokenResponse> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 

Page 33 of 68 



        ... 

        <wst:Status> 

           <wst:Code>...</wst:Code> 

           <wst:Reason>...</wst:Reason> 

        </wst:Status> 

    <wst:RequestSecurityTokenResponse> 

/wst:RequestSecurityTokenResponse/wst:Status 
When a validation request is made, this element MUST be in the response.  The code 
value indicates the results of the validation in a machine-readable form.  The 
accompanying text element allows for human textual display. 

/wst:RequestSecurityTokenResponse/wst:Status/wst:Code 
This required URI value provides a machine-readable status code.  The following 
URIs are predefined, but others MAY be used. 

URI Description 

http://schemas.xmlsoap.org/ws/2005/02/trust/status/va
lid

The request successfully 
validated the input 

http://schemas.xmlsoap.org/ws/2005/02/trust/status/in
valid

The request did not 
successfully validate the 
input 

/wst:RequestSecurityTokenResponse/wst:Status/wst:Reason 
This optional string provides human-readable text relating to the status code. 

The following example illustrates a validation request and response.  In this example no 
token is requested, just a status. 

    <wst:RequestSecurityToken> 

        <wst:TokenType> 

          http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Status 

        </wst:TokenType> 

        <wst:RequestType> 

            http://schemas.xmlsoap.org/ws/2005/02/trust/Validate 

        </wst:RequestType> 

    </wst:RequestSecurityToken> 

 

    <wst:RequestSecurityTokenResponse> 

        <wst:TokenType> 

          http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/Status 

        </wst:TokenType> 

        <wst:Status> 

            <wst:Code> 

         http://schemas.xmlsoap.org/ws/2005/02/trust/status/valid 

Page 34 of 68 

http://schemas.xmlsoap.org/ws/2004/12/security/trust/status/valid
http://schemas.xmlsoap.org/ws/2004/12/security/trust/status/valid
http://schemas.xmlsoap.org/ws/2004/12/security/trust/status/invalid
http://schemas.xmlsoap.org/ws/2004/12/security/trust/status/invalid


            </wst:Code> 

        </wst:Status> 

        ... 

    </wst:RequestSecurityTokenResponse> 

The following example illustrates a validation request and response.  In this example a 
custom token is requested indicating authorized rights in addition to the status. 

    <wst:RequestSecurityToken> 

        <wst:TokenType> 

            http://example.org/mySpecialToken 

        </wst:TokenType> 

        <wst:RequestType> 

            http://schemas.xmlsoap.org/ws/2005/02/trust/Validate 

        </wst:RequestType> 

    </wst:RequestSecurityToken> 

 

    <wst:RequestSecurityTokenResponse> 

        <wst:TokenType> 

            http://example.org/mySpecialToken 

        </wst:TokenType> 

        <wst:Status> 

            <wst:Code>  

         http://schemas.xmlsoap.org/ws/2005/02/trust/status/valid 

            </wst:Code> 

        </wst:Status> 

        <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 

        ... 

    </wst:RequestSecurityTokenResponse> 

10. Negotiation and Challenge Extensions 
The general security token service framework defined above allows for a simple request 
and response for security tokens (possibly asynchronous).  However, there are many 
scenarios where a set of exchanges between the parties is required prior to returning 
(e.g., issuing) a security token.  This section describes the extensions to the base WS-
Trust mechanisms to enable exchanges for negotiation and challenges. 

There are potentially different forms of exchanges, but one specific form, called 
"challenges", provides mechanisms in addition to those described in [WS-Security] for 
authentication. This section describes how general exchanges are issued and responded 
to within this framework. Other types of exchanges include, but are not limited to, 
negotiation, tunneling of hardware-based processing, and tunneling of legacy protocols. 

Page 35 of 68 



The process is straightforward (illustrated here using a challenge): 

 

 

1. A requestor sends, for example, a <wst:RequestSecurityToken> message with a 
timestamp. 

2. The recipient does not trust the timestamp and issues a 
<wst:RequestSecurityTokenResponse> message with an embedded challenge. 

3. The requestor sends a <wst:RequestSecurityTokenReponse> message with an 
answer to the challenge. 

4. The recipient issues a <wst:RequestSecurityTokenResponse> message with the 
issued security token and optional proof-of-possession token. 

It should be noted that the requestor might challenge the recipient in either step 1 or 
step 3.  In which case, step 2 or step 4 contains an answer to the initiator's challenge.  
Similarly, it is possible that steps 2 and 3 could iterate multiple times before the process 
completes (step 4). 

The two services can use [WS-SecurityPolicy] to state their requirements and 
preferences for security tokens and encryption and signing algorithms (general policy 
intersection).  This section defines mechanisms for legacy and more sophisticated types 
of negotiations. 

10.1 Negotiation and Challenge Framework 
The general mechanisms defined for requesting and returning security tokens are 
extensible.  This section describes the general model for extending these to support 
negotiations and challenges. 

The exchange model is as follows: 

1. A request is initiated with a <wst:RequestSecurityToken> that identifies the 
details of the request (and may contain initial negotiation/challenge information) 

2. A response is returned with a <wst:RequestSecurityTokenResponse> that 
contains additional negotiation/challenge information.  Optionally, this may return 
token information (if the exchange is two legs long). 

3. If the exchange is not complete, the requestor uses a 
<wst:RequestSecurityTokenResponse> that contains additional 
negotiation/challenge information. 

Page 36 of 68 



4. The process repeats at step 2 until the negotiation/challenge is complete (a token 
is returned or a Fault occurs). 

The negotiation/challenge information is passed in binding/profile-specific elements that 
are placed inside of the <wst:RequestSecurityToken> and 
<wst:RequestSecurityTokenResponse> elements. 

It is RECOMMENDED that at least the <wsu:Timestamp> element be included in 
messages (as per [WS-Security]) as a way to ensure freshness of the messages in the 
exchange.  Other types of challenges MAY also be included.  For example, a 
<wsp:Policy> element may be used to negotiate desired policy behaviors of both 
parties. Multiple challenges and responses MAY be included. 

10.2 Signature Challenges 
Exchange requests are issued by including an element that describes the exchange (e.g. 
challenge) and responses contain an element describing the response.  For example, 
signature challenges are processed using the <SignChallenge> element.  The response 
is returned in a <SignChallengeResponse> element.  Both the challenge and the 
response elements are specified within the <wst:RequestSecurityTokenResponse> 
element.  Some forms of negotiation MAY specify challenges along with responses to 
challenges from the other party.  It should be noted that the requestor MAY provide 
exchange information (e.g. a challenge) to the recipient in the initial request.  
Consequently, these elements are also allowed within a <wst:RequestSecurityToken> 
element. 

The syntax of these elements is as follows: 

    <wst:SignChallenge> 

        <wst:Challenge ...>...</wst:Challenge> 

    </wst:SignChallenge> 

 

    <wst:SignChallengeResponse> 

        <wst:Challenge ...>...</wst:Challenge> 

    </wst:SignChallengeResponse> 

The following describes the attributes and tags listed in the schema above: 

.../wst:SignChallenge 
This optional element describes a challenge that requires the other party to sign a 
specified set of information. 

.../wst:SignChallenge/ws:LChallenge 
This required string element describes the value to be signed.  In order to prevent 
certain types of attacks (such as man-in-the-middle), it is strongly RECOMMENDED 
that the challenge be bound to the negotiation.  For example, the challenge SHOULD 
track (such as using a digest of) any relevant data exchanged such as policies, 
tokens, replay protection, etc.  As well, if the challenge is happening over a secured 
channel, a reference to the channel SHOULD also be included.  Furthermore, the 
recipient of a challenge SHOULD verify that the data tracked (digested) matches 
their view of the data exchanged.  The exact algorithm MAY be defined in profiles or 
agreed to by the parties. 

.../SignChallenge/{any} 

Page 37 of 68 



This is an extensibility mechanism to allow additional negotiation types to be used. 

.../wst:SignChallenge/@{any} 
This is an extensibility mechanism to allow additional attributes, based on schemas, 
to be added to the element. 

.../wst:SignChallengeResponse 
This optional element describes a response to a challenge that requires the signing of 
a specified set of information. 

.../wst:SignChallengeResponse/wst:Challenge 
If a challenge was issued, the response MUST contain the challenge element exactly 
as received.  As well, while the RSTR response SHOULD always be signed, if a 
challenge was issued, the RSTR MUST be signed (and the signature coupled with the 
message to prevent replay). 

.../wst:SignChallengeResponse/{any} 
This is an extensibility mechanism to allow additional negotiation types to be used. 

.../wst:SignChallengeResponse/@{any} 
This is an extensibility mechanism to allow additional attributes, based on schemas, 
to be added to the element. 

10.3 Binary Exchanges and Negotiations 
Exchange requests may also utilize existing binary formats passed within the WS-Trust 
framework.  A generic mechanism is provided for this that includes a URI attribute to 
indicate the type of binary exchange. 

The syntax of this element is as follows: 

    <wst:BinaryExchange ValueType="..." EncodingType="..."> 

    ... 

    </wst:BinaryExchange> 

The following describes the attributes and tags listed in the schema above (note that the 
ellipses below indicate that this element may be placed in different containers.  For this 
specification, these are limited to <wst:RequestSecurityToken> and 
<wst:RequestSecurityTokenResponse>): 

.../wst:BinaryExchange 
This optional element is used for a security negotiation that involves exchanging 
binary blobs as part of an existing negotiation protocol.  The contents of this element 
are blob-type-specific and are encoded using base64 (unless otherwise specified). 

.../wst:BinaryExchange/@ValueType 
This required attribute specifies a URI to identify the type of negotiation (and the 
value space of the blob – the element's contents). 

.../wst:BinaryExchange/@EncodingType 
This required attribute specifies a URI to identify the encoding format (if different 
from base64) of the negotiation blob.  Refer to [WS-Security] for sample encoding 
format URIs. 

.../wst:BinaryExchange/@{any} 
This is an extensibility mechanism to allow additional attributes, based on schemas, 
to be added to the element. 

Page 38 of 68 



Some binary exchanges result in a shared state/context between the involved parties.  
It is RECOMMENDED that at the conclusion of the exchange, a new token and proof-of-
possession token be returned.  A common approach is to use the negotiated key as a 
"secure channel" mechanism to secure the new token and proof-of-possession token. 

For example, an exchange might establish a shared secret Sx that can then be used to 
sign the final response and encrypt the proof-of-possession token. 

10.4 Key Exchange Tokens 
In some cases it may be necessary to provide a key exchange token so that the other 
party (either requestor or issuer) can provide entropy or key material as part of the 
exchange.  Challenges may not always provide a usable key as the signature may use a 
signing-only certificate. 

The section describes two optional elements that can be included in RST and RSTR 
elements to indicate that a Key Exchange Token (KET) is desired, or to provide a KET. 

The syntax of these elements is as follows (Note that the ellipses below indicate that this 
element may be placed in different containers.  For this specification, these are limited 
to <wst:RequestSecurityToken> and <wst:RequestSecurityTokenResponse>): 

<wst:RequestKET/> 

<wst:KeyExchangeToken>...</wst:KeyExchangeToken> 

The following describes the attributes and tags listed in the schema above: 

.../wst:RequestKET 
This optional element is used to indicate that the receiving party (either the original 
requestor or issuer) should provide a KET to the other party on the next leg of the 
exchange. 

.../wst:KeyExchangeToken 
This optional element is used to provide a key exchange token.  The contents of this 
element either contain the security token to be used for key exchange or a reference 
to it. 

10.5 Custom Exchanges 
Using the extensibility model described in this specification, any custom XML-based 
exchange can be defined in a separate binding/profile document.  In such cases 
elements are defined which are carried in the RST and RSTR elements. 

It should be noted that it is NOT REQUIRED that exchange elements be symmetric.  That 
is, a specific exchange mechanism MAY use multiple elements at different times, 
depending on the state of the exchange. 

10.6 Signature Challenge Example 
Here is an example exchange involving a signature challenge.  In this example, a service 
requests a custom token using a X.509 certificate for authentication.  The issuer uses 
the exchange mechanism to challenge the requestor to sign a random value (to ensure 
message freshness).  The requestor provides a signature of the requested data and, 
once validated, the issuer then issues the requested token. 

The first message illustrates the initial request that is signed with the requestor's X.509 
certificate: 

Page 39 of 68 



<S11:Envelope xmlns:S11="..." xmlns:wsse="..."  

        xmlns:wsu="..." xmlns:wst="..."> 

    <S11:Header> 

        ... 

        <wsse:Security> 

            <wsse:BinarySecurityToken 

                    wsu:Id="reqToken" 

                    ValueType="...X509v3"> 

                MIIEZzCCA9CgAwIBAgIQEmtJZc0... 

            </wsse:BinarySecurityToken> 

            <ds:Signature xmlns:ds="..."> 

                ... 

              <ds:KeyInfo> 

                <wsse:SecurityTokenReference> 

                    <wsse:Reference URI="#reqToken"/> 

                </wsse:SecurityTokenReference> 

              </ds:KeyInfo> 

            </ds:Signature> 

        </wsse:Security> 

        ... 

    </S11:Header> 

    <S11:Body> 

        <wst:RequestSecurityToken> 

            <wst:TokenType> 

                http://example.org/mySpecialToken 

            </wst:TokenType> 

            <wst:RequestType> 

                http://schemas.xmlsoap.org/ws/2005/02/trust/Issue 

            </wst:RequestType> 

        </wst:RequestSecurityToken> 

    </S11:Body> 

</S11:Envelope> 

The issuer (recipient) service doesn't trust the sender's timestamp (or one wasn't 
specified) and issues a challenge using the exchange framework defined in this 
specification.  This message is signed using the issuer's X.509 certificate and contains a 
random challenge that the requestor must sign: 

Page 40 of 68 



<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 

        xmlns:wst="..."> 

    <S11:Header> 

        ... 

        <wsse:Security> 

            <wsse:BinarySecurityToken 

                    wsu:Id="issuerToken" 

                    ValueType="...X509v3"> 

                DFJHuedsujfnrnv45JZc0... 

            </wsse:BinarySecurityToken> 

            <ds:Signature xmlns:ds="..."> 

                ... 

            </ds:Signature> 

       </wsse:Security> 

       ... 

    </S11:Header> 

    <S11:Body> 

        <wst:RequestSecurityTokenResponse> 

            <wst:SignChallenge> 

                <wst:Challenge>Huehf...</wst:Challenge> 

            </wst:SignChallenge> 

        </wst:RequestSecurityTokenResponse> 

    </S11:Body> 

</S11:Envelope> 

The requestor receives the issuer's challenge and issues a response that is signed using 
the requestor's X.509 certificate and contains the challenge.  The signature only covers 
the non-mutable elements of the message to prevent certain types of security attacks: 

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 

        xmlns:wst="..."> 

    <S11:Header> 

        ... 

        <wsse:Security> 

            <wsse:BinarySecurityToken 

                    wsu:Id="reqToken" 

                    ValueType="...X509v3"> 

                MIIEZzCCA9CgAwIBAgIQEmtJZc0... 

            </wsse:BinarySecurityToken> 

Page 41 of 68 



            <ds:Signature xmlns:ds="..."> 

                ... 

            </ds:Signature> 

        </wsse:Security> 

        ... 

    </S11:Header> 

    <S11:Body> 

        <wst:RequestSecurityTokenResponse> 

            <wst:SignChallengeResponse> 

                <wst:Challenge>Huehf...</wst:Challenge> 

            </wst:SignChallengeResponse> 

        </wst:RequestSecurityTokenResponse> 

    </S11:Body> 

</S11:Envelope> 

The issuer validates the requestor's signature responding to the challenge and issues the 
requested token(s) and the associated proof-of-possession token.  The proof-of-
possession token is encrypted for the requestor using the requestor's public key. 

<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 

        xmlns:wst="..." xmlns:xenc="..."> 

    <S11:Header> 

        ... 

        <wsse:Security> 

            <wsse:BinarySecurityToken 

                    wsu:Id="issuerToken" 

                    ValueType="...X509v3"> 

                DFJHuedsujfnrnv45JZc0... 

            </wsse:BinarySecurityToken> 

            <ds:Signature xmlns:ds="..."> 

                ... 

            </ds:Signature> 

        </wsse:Security> 

        ... 

    </S11:Header> 

    <S11:Body> 

        <wst:RequestSecurityTokenResponse> 

            <wst:RequestedSecurityToken> 

                <xyz:CustomToken xmlns:xyz="..."> 

Page 42 of 68 



                    ... 

                </xyz:CustomToken> 

            </wst:RequestedSecurityToken> 

            <wst:RequestedProofToken> 

                <xenc:EncryptedKey Id="newProof"> 

                    ... 

                </xenc:EncryptedKey> 

            </wst:RequestedProofToken> 

        </wst:RequestSecurityTokenResponse> 

    </S11:Body> 

</S11:Envelope> 

10.7 Custom Exchange Example 
Here is another example illustrating a token request using a custom XML exchange.  For 
brevity, only the RST and RSTR elements are illustrated.  Note that the framework 
allows for an arbitrary number of exchanges, although this example illustrates the use of 
four legs.  The request uses a custom exchange element and the requestor signs only 
the non-mutable element of the message: 

    <wst:RequestSecurityToken> 

        <wst:TokenType> 

            http://example.org/mySpecialToken 

        </wst:TokenType> 

        <wst:RequestType> 

            http://schemas.xmlsoap.org/ws/2005/02/trust/Issue 

        </wst:RequestType> 

        <xyz:CustomExchange xmlns:xyz="..."> 

            ... 

        </xyz:CustomExchange> 

    </wst:RequestSecurityToken> 

The issuer service (recipient) responds with another leg of the custom exchange and 
signs the response (non-mutable aspects) with its token: 

... 

    <wst:RequestSecurityTokenResponse> 

        <xyz:CustomExchange xmlns:xyz="..."> 

            ... 

        </xyz:CustomExchange> 

    </wst:RequestSecurityTokenResponse> 

... 

Page 43 of 68 



The requestor receives the issuer's exchange and issues a response that is signed using 
the requestor's token and continues the custom exchange.  The signature covers all 
non-mutable aspects of the message to prevent certain types of security attacks: 

... 

    <wst:RequestSecurityTokenResponse> 

        <xyz:CustomExchange xmlns:xyz="..."> 

            ... 

        </xyz:CustomExchange> 

    </wst:RequestSecurityTokenResponse> 

... 

The issuer processes the exchange and determines that the exchange is complete and 
that a token should be issued.  Consequently it issues the requested token(s) and the 
associated proof-of-possession token.  The proof-of-possession token is encrypted for 
the requestor using the requestor's public key. 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xyz:CustomToken xmlns:xyz="..."> 

                ... 

            </xyz:CustomToken> 

        </wst:RequestedSecurityToken> 

        <wst:RequestedProofToken> 

            <xenc:EncryptedKey Id="newProof"> 

                ... 

            </xenc:EncryptedKey> 

        </wst:RequestedProofToken> 

        <wst:RequestedProofToken> 

           <xenc:EncryptedKey>...</xenc:EncryptedKey> 

        </wst:RequestedProofToken> 

    </wst:RequestSecurityTokenResponse> 

... 

It should be noted that other example exchanges include the issuer returning a final 
custom exchange element, and another example where a token isn't returned. 

10.8 Protecting Exchanges 
There are some attacks, such as forms of man-in-the-middle, that can be applied to 
token requests involving exchanges.  It is RECOMMENDED that the exchange sequence 
be protected.  This may be built into the exchange messages, but if metadata is 
provided in the RST or RSTR elements, then it is subject to attack. 

Page 44 of 68 



Consequently, it is RECOMMENDED that keys derived from exchanges be linked 
cryptographically to the exchange.  For example, a hash can be computed by computing 
the SHA1 of the exclusive canonicalization of all RST and RSTR elements in messages 
exchanged.  This value can then be combined with the exchanged secret(s) to create a 
new master secret that is bound to the data both parties sent/received. 

To this end, the following computed key algorithm is defined to be optionally used in 
these scenarios: 

URI Meaning 

http://schemas.xmlsoap.org/ws/2005/02/
trust/CK/HASH

The key is computed using P_SHA1 as 
follows: 

  H=SHA1(ExclC14N(RST...RSTRs)) 

  X=encrypting H using negotiatied 
      key and mechanism 

  Key=P_SHA1(X,H+"CK-HASH") 

The octets for the "CK-HASH" string 
are the UTF-8 octets. 

10.9 Authenticating Exchanges 
After an exchange both parties have a shared knowledge of a key (or keys) that can 
then be used to secure messages.  However, in some cases it may be desired to have 
the issuer prove to the requestor that it knows the key (and that the returned metadata 
is valid) prior to the requestor using the data.  However, until the exchange is actually 
completed it may (and is often) inappropriate to use the computed keys.  As well, using 
a token that hasn't been returned to secure a message may complicate processing since 
it crosses the boundary of the exchange and the underlying message security.  This 
means that it may not be appropriate to sign the final leg of the exchange using the key 
derived from the exchange. 

For this reason an authenticator is defined that provides a way for the issuer to verify 
the hash as part of the token issuance.  Specifically, when an authenticator is returned, 
the <wst:RequestSecurityTokenResponseCollection> element is returned.  This 
contains one RSTR with the token being returned as a result of the exchange and a 
second RSTR that contains the authenticator (this order SHOULD be used).  When an 
authenticator is used, RSTRs MUST use the @Context element so that the authenticator 
can be correlated to the token issuance.  The authenticator is separated from the RSTR 
because otherwise computation of the RST/RSTR hash becomes more complex.  The 
authenticator is represented using the <wst:Authenticator> element as illustrated 
below: 

... 

    <wst:RequestSecurityTokenResponseCollection> 

        <wst:RequestSecurityTokenResponse Context="..."> 

            ... 

        </wst:RequestSecurityTokenResponse> 

        <wst:RequestSecurityTokenResponse Context="..."> 

            <wst:Authenticator> 

Page 45 of 68 

http://schemas.xmlsoap.org/ws/2004/12/security/trust/CK/HASH
http://schemas.xmlsoap.org/ws/2004/12/security/trust/CK/HASH


                <wst:CombinedHash>...</wst:CombinedHash> 

                ... 

            </wst:Authenticator> 

        </wst:RequestSecurityTokenResponse> 

    </wst:RequestSecurityTokenResponseCollection> 

... 

The following describes the attributes and elements listed in the schema overview above 
(the ... notation below represents the path RSTRC/RSTR and is used for brevity): 

.../wst:Authenticator 
This optional element provides verification (authentication) of a computed hash. 

.../wst:Authenticator/wst:CombinedHash 
This optional element proves the hash and knowledge of the computed key.  This is 
done by providing the base64 encoding of the first 256 bits of the P_SHA1 digest of 
the computed key and the concatenation of the hash determined for the computed 
key and the string "AUTH-HASH".  Specifically, P_SHA1(computed-key, H + "AUTH-
HASH")0-255. The octets for the "AUTH-HASH" string are the UTF-8 octets. 

This <wst:CombinedHash> element is optional (and an open content model is used) to 
allow for different authenticators in the future. 

11. Key and Token Parameter Extensions 
This section outlines additional parameters that can be specified in token requests and 
responses.  Typically they are used with issuance requests, but since all types of 
requests may issue security tokens they could apply to binding. 

11.1 On-Behalf-Of Parameters 
In some scenarios the requestor is obtaining a token on behalf of another party.  These 
parameters specify the issuer and original requestor of the token being used as the basis 
of the request.  The syntax is as follows (note that the base elements described above 
are included here italicized for completeness): 

    <wst:RequestSecurityToken> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestType>...</wst:RequestType> 

        ... 

        <wst:OnBehalfOf>...</wst:OnBehalfOf> 

        <wst:Issuer>...</wst:Issuer> 

    </wst:RequestSecurityToken> 

The following describes the attributes and elements listed in the schema overview 
above: 

/wst:RequestSecurityToken/wst:OnBehalfOf 
This optional element indicates that the requestor is making the request on behalf of 
another.  The identity on whose behalf the request is being made is specified by 
placing a security token, <wsse:SecurityTokenReference> element, or 
<wsa:EndpointReference> element within the <wst:OnBehalfOf> element. 

Page 46 of 68 



/wst:RequestSecurityToken/wst:Issuer 
This optional element specifies the issuer of the security token that is presented in 
the message.  This element's type is an endpoint reference as defined in [WS-
Addressing]. 

In the following example a proxy is requesting a security token on behalf of another 
requestor or end-user. 

    <wst:RequestSecurityToken> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestType>...</wst:RequestType> 

        ... 

        <wst:OnBehalfOf>endpoint-reference</wst:OnBehalfOf> 

    </wst:RequestSecurityToken> 

11.2 Key and Encryption Requirements 
This section defines extensions to the <wst:RequestSecurityToken> element for 
requesting specific types of keys or algorithms or key and algorithms as specified by a 
given policy in the return token(s).  In some cases the service may support a variety of 
key types, sizes, and algorithms.  These parameters allow a requestor to indicate its 
desired values.  It should be noted that the issuer's policy indicates if input values must 
be adhered to and faults generated for invalid inputs, or if the issuer will provide 
alterative values in the response. 

Although illustrated using the <wst:RequestSecurityToken> element, these options can 
also be returned in a <wst:RequestSecurityTokenResponse> element. 

The syntax for these optional elements is as follows (note that the base elements 
described above are included here italicized for completeness): 

    <wst:RequestSecurityToken> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestType>...</wst:RequestType> 

        ... 

        <wst:AuthenticationType>...</wst:AuthenticationType> 

        <wst:KeyType>...</wst:KeyType> 

        <wst:KeySize>...</wst:KeySize> 

        <wst:SignatureAlgorithm>...</wst:SignatureAlgorithm> 

        <wst:EncryptionAlgorithm>...</wst:EncryptionAlgorithm> 

        <wst:CanonicalizationAlgorithm>...</wst:CanonicalizationAlgorithm> 

        <wst:ComputedKeyAlgorithm>...</wst:ComputedKeyAlgorithm> 

        <wst:Encryption>...</wst:Encryption> 

        <wst:ProofEncryption>...</wst:ProofEncryption> 

        <wst:UseKey Sig=...>...</wst:UseKey> 

        <wst:SignWith>...</wst:SignWith> 

Page 47 of 68 



        <wst:EncryptWith>...</wst:EncryptWith> 

    </wst:RequestSecurityToken> 

The following describes the attributes and elements listed in the schema overview 
above: 

/wst:RequestSecurityToken/wst:AuthenticationType 
This optional URI element indicates the type of authentication desired, specified as a 
URI.  This specification does not predefine classifications; these are specific to token 
services as is the relative strength evaluations.  The relative assessment of strength 
is up to the recipient to determine.  That is, requestors should be familiar with the 
recipient policies.  For example, this might be used to indicate which of the four U.S. 
government authentication levels is required. 

/wst:RequestSecurityToken/wst:KeyType 
This optional URI element indicates the type of key desired in the security token.  
The predefined values are identified in the table below.  Note that some security 
token formats have fixed key types.  It should be noted that new algorithms can be 
inserted by defining URIs in other specifications and profiles. 

URI Meaning

http://schemas.xmlsoap.org/ws/2005/02/
trust/PublicKey 

A public key token is requested 

http://schemas.xmlsoap.org/ws/2005/02/
trust/SymmetricKey 

A symmetric key token is requested 
(default) 

/wst:RequestSecurityToken/wst:KeySize 
This optional integer element indicates the size of the key required specified in 
number of bits.  This is a request, and, as such, the requested security token is not 
obligated to use the requested key size.  That said, the recipient SHOULD try to use 
a key at least as strong as the specified value if possible.  The information is 
provided as an indication of the desired strength of the security. 

/wst:RequestSecurityToken/wst:SignatureAlgorithm 
This optional URI element indicates the desired signature algorithm used within the 
returned token.  This is specified as a URI indicating the algorithm (see [XML 
Signature] for typical signing algorithms).

/wst:RequestSecurityToken/wst:EncryptionAlgorithm 
This optional URI element indicates the desired encryption algorithm used within the 
returned token.  This is specified as a URI indicating the algorithm (see [XML-
Encrypt] for typical encryption algorithms). 

/wst:RequestSecurityToken/wst:CanonicalizationAlgorithm 
This optional URI element indicates the desired canonicalization method used within 
the returned token.  This is specified as a URI indicating the method (see [XML 
Signature] for typical canonicalization methods). 

/wst:RequestSecurityToken/wst:ComputedKeyAlgorithm 
This optional URI element indicates the desired algorithm to use when computed 
keys are used for issued tokens. 

/wst:RequestSecurityToken/wst:Encryption 
This optional element indicates that the requestor desires any returned secrets in 
issued security tokens to be encrypted for the specified token.  That is, so that the 
owner of the specified token can decrypt the secret.  Normally the security token is 

Page 48 of 68 



the contents of this element but a security token reference MAY be used instead.  If 
this element isn't specified, the token used as the basis of the request (or specialized 
knowledge) is used to determine how to encrypt the key. 

/wst:RequestSecurityToken/wst:ProofEncryption 
This optional element indicates that the requestor desires any returned secrets in 
proof-of-possession tokens to be encrypted for the specified token.  That is, so that 
the owner of the specified token can decrypt the secret.  Normally the security token 
is the contents of this element but a security token reference MAY be used instead.  
If this element isn't specified, the token used as the basis of the request (or 
specialized knowledge) is used to determine how to encrypt the key. 

/wst:RequestSecurityToken/wst:UseKey 
If the requestor wishes to use an existing key rather than create a new one, then 
this optional element can be used to reference the security token containing the 
desired key.  This element either contains a security token or a 
<wsse:SecurityTokenReference> element that references the security token 
containing the key that should be used in the returned token. If <wst:KeyType> is 
not defined and a key type is not implicitly known to the service, it MAY be 
determined from the token (if possible).  Otherwise this parameter is meaningless 
and is ignored.  Requestors SHOULD demonstrate authorized use of the public key 
provided. 

/wst:RequestSecurityToken/wst:UseKey/@Sig 
In order to authenticate the key referenced, a signature MAY be used to prove the 
referenced token/key.  If specified, this optional attribute indicates the ID of the 
corresponding signature (by URI reference).  When this attribute is present, a key 
need not be specified inside the element since the referenced signature will indicate 
the corresponding token (and key). 

/wst:RequestSecurityToken/wst:SignWith 
This optional URI element indicates the desired signature algorithm to be used with 
the issued security token (typically from the policy of the target site for which the 
token is being requested.  While any of these optional elements MAY be included in 
RSTRs, this one is a likely candidate if there is some doubt (e.g., an X.509 cert that 
can only use DSS). 

/wst:RequestSecurityToken/wst:EncryptWith 
This optional URI element indicates the desired encryption algorithm to be used with 
the issued security token (typically from the policy of the target site for which the 
token is being requested.)  While any of these optional elements MAY be included in 
RSTRs, this one is a likely candidate if there is some doubt. 

The example below illustrates a request that utilizes several of these parameters.  A 
request is made for a custom token using a username and password as the basis of the 
request.  For security, this token is encrypted (see "encUsername") for the recipient 
using the recipient's public key and referenced in the encryption manifest.  The message 
is protected by a signature using a public key from the sender and authorized by the 
username and password. 

The requestor would like the custom token to contain a 1024-bit public key whose value 
can be found in the key provided with the "proofSignature" signature (the key identified 
by "requestProofToken").  The token should be signed using RSA-SHA1 and encrypted 
for the token identified by "requestEncryptionToken".  The proof should be encrypted 
using the token identified by "requestProofToken". 

Page 49 of 68 



<S11:Envelope xmlns:S11="..." xmlns:wsse="..." xmlns:wsu="..." 

        xmlns:wst="..." xmlns:ds="..." xmlns:xenc="..."> 

    <S11:Header> 

        ... 

        <wsse:Security> 

            <xenc:ReferenceList>...</xenc:ReferenceList> 

            <xenc:EncryptedData Id="encUsername">...</xenc:EncryptedData> 

            <wsse:BinarySecurityToken wsu:Id="requestEncryptionToken"  

                    ValueType="...SomeTokenType" xmlns:x="..."> 

                MIIEZzCCA9CgAwIBAgIQEmtJZc0... 

            </wsse:BinarySecurityToken> 

            <wsse:BinarySecurityToken wsu:Id="requestProofToken"  

                    ValueType="...SomeTokenType" xmlns:x="..."> 

                MIIEZzCCA9CgAwIBAgIQEmtJZc0... 

           </wsse:BinarySecurityToken> 

           <ds:Signature Id="proofSignature"> 

               ... signature proving requested key ... 

               ... key info points to the "requestedProofToken" token ... 

           </ds:Signature> 

       </wsse:Security> 

       ... 

    </S11:Header> 

    <S11:Body wsu:Id="req"> 

        <wst:RequestSecurityToken> 

            <wst:TokenType> 

                http://example.org/mySpecialToken 

            </wst:TokenType> 

            <wst:RequestType> 

                http://schemas.xmlsoap.org/ws/2005/02/trust/Issue 

            </wst:RequestType> 

           <wst:KeyType> 

            http://schemas.xmlsoap.org/ws/2005/02/trust/PublicKey 

            </wst:KeyType> 

            <wst:KeySize>1024</wst:KeySize> 

            <wst:SignatureAlgorithm> 

                http://www.w3.org/2000/09/xmldsig#rsa-sha1 

Page 50 of 68 



            </wst:SignatureAlgorithm> 

            <wst:Encryption> 

                <Reference URI="#requestEncryptionToken"> 

            </wst:Encryption> 

            <wst:ProofEncryption> 

                <wsse:Reference URI="#requestProofToken"/> 

            </wst:ProofEncryption> 

            <wst:UseKey Sig="#proofSignature"/> 

        </wst:RequestSecurityToken> 

    </S11:Body> 

</S11:Envelope> 

11.3 Delegation and Forwarding Requirements 
This section defines extensions to the <wst:RequestSecurityToken> element for 
indicating delegation and forwarding requirements on the requested security token(s). 

The syntax for these extension elements is as follows (note that the base elements 
described above are included here italicized for completeness): 

    <wst:RequestSecurityToken> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestType>...</wst:RequestType> 

        ... 

        <wst:DelegateTo>...</wst:DelegateTo> 

        <wst:Forwardable>...</wst:Forwardable> 

        <wst:Delegatable>...</wst:Delegatable> 

    </wst:RequestSecurityToken> 

/wst:RequestSecurityToken/wst:DelegateTo 
This optional element indicates that the requested or issued token be delegated to 
another identity.  The identity receiving the delegation is specified by placing a 
security token or <wsse:SecurityTokenReference> element within the 
<wst:DelegateTo> element.   

/wst:RequestSecurityToken/wst:Forwardable 
This optional element, of type xs:boolean, specifies whether the requested security 
token should be marked as "Forwardable".  In general, this flag is used when a token 
is normally bound to the requestor's machine or service.  Using this flag, the 
returned token MAY be used from any source machine so long as the key is correctly 
proven.  The default value of this flag is true. 

/wst:RequestSecurityToken/wst:Delegatable 
This optional element, of type xs:boolean, specifies whether the requested security 
token should be marked as "Delegatable". Using this flag, the returned token MAY be 
delegated to another party. This parameter SHOULD be used in conjunction with 
<wst:DelegateTo>.  The default value of this flag is false. 

Page 51 of 68 



The following example illustrates a request for a custom token that can be delegated to 
the indicated recipient (specified in the binary security token) and used in the specified 
interval. 

    <wst:RequestSecurityToken> 

        <wst:TokenType> 

            http://example.org/mySpecialToken 

        </wst:TokenType> 

        <wst:RequestType> 

            http://schemas.xmlsoap.org/ws/2005/02/trust/Issue 

        </wst:RequestType> 

        <wst:DelegateTo> 

            <wsse:BinarySecurityToken>...</wsse:BinarySecurityToken> 

        </wst:DelegateTo> 

        <wst:Delegatable>true</wst:Delegatable> 

    </wst:RequestSecurityToken> 

11.4 Policies 
This section defines extensions to the <wst:RequestSecurityToken> element for 
passing policies. 

The syntax for these extension elements is as follows (note that the base elements 
described above are included here italicized for completeness): 

    <wst:RequestSecurityToken> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestType>...</wst:RequestType> 

        ... 

        <wsp:Policy>...</wsp:Policy> 

        <wsp:PolicyReference>...</wsp:PolicyReference> 

    </wst:RequestSecurityToken> 

The following describes the attributes and elements listed in the schema overview 
above: 

/wst:RequestSecurityToken/wsp:Policy 
This optional element specifies a policy (as defined in [WS-Policy]) that indicates 
desired settings for the requested token.  The policy specifies defaults that can be 
overridden by the elements defined in the previous sections. 

/wst:RequestSecurityToken/wsp:PolicyReference 
This optional element specifies a reference to a policy (as defined in [WS-Policy]) 
that indicates desired settings for the requested token.  The policy specifies defaults 
that can be overridden by the elements defined in the previous sections. 

The following example illustrates a request for a custom token that provides a set of 
policy statements about the token or its usage requirements. 

Page 52 of 68 



    <wst:RequestSecurityToken> 

        <wst:TokenType> 

            http://example.org/mySpecialToken 

        </wst:TokenType> 

        <wst:RequestType> 

            http://schemas.xmlsoap.org/ws/2005/02/trust/Issue 

        </wst:RequestType> 

        <wsp:Policy xmlns:wsp="..."> 

            ... 

        </wsp:Policy> 

    </wst:RequestSecurityToken> 

11.5 Authorized Token Participants 
This section defines extensions to the <wst:RequestSecurityToken> element for 
passing information about which parties are authorized to participate in the use of the 
token.  This parameter is typically used when there are additional parties using the 
token or if the requestor needs to clarify the actual parties involved (for some profile-
specific reason). 

It should be noted that additional participants will need to prove their identity to 
recipients in addition to proving their authorization to use the returned token.  This 
typically takes the form of a second signature or use of transport security. 

The syntax for these extension elements is as follows (note that the base elements 
described above are included here italicized for completeness): 

    <wst:RequestSecurityToken> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestType>...</wst:RequestType> 

        ... 

        <wst:Participants> 

            <wst:Primary>...</wst:Primary> 

            <wst:Participant>...</wst:Participant> 

        </wst:Participants> 

    </wst:RequestSecurityToken> 

The following describes elements and attributes used in a <wsc:SecurityContextToken> 
element. 

/wst:RequestSecurityToken/wst:Participants/ 
This optional element specifies the participants sharing the security token. Arbitrary 
types may be used to specify participants, but a typical case is a security token or an 
endpoint reference (see [WS-Addressing]). 

/wst:RequestSecurityToken/wst:Participants/wst:Primary 
This optional element specifies the primary user of the token (if one exists). 

Page 53 of 68 



/wst:RequestSecurityToken/wst:Participants/wst:Participant 
This optional element specifies participant (or multiple participants by repeating the 
element) that play a (profile-dependent) role in the use of the token or who are 
allowed to use the token. 

/wst:RequestSecurityToken/wst:Participants/{any} 
This is an extensibility option to allow other types of participants and profile-specific 
elements to be specified. 

12. Key Exchange Token Binding 
Using the token request framework, this section defines a binding for requesting a key 
exchange token (KET).  That is, if a requestor desires a token that can be used to 
encrypt key material for a recipient. 

For this binding, the following actions are defined to enable specific processing context 
to be conveyed to the recipient: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/RST/KET 

    http://schemas.xmlsoap.org/ws/2005/02/trust/RSTR/KET 

For this binding, the RequestType element contains the following URI: 

    http://schemas.xmlsoap.org/ws/2005/02/trust/KET 

For this binding very few parameters are specified as input.  Optionally the 
<wst:TokenType> element can be specified in the request can indicate desired type 
response token carrying the key for key exchange; however, this isn't commonly used. 

The applicability scope (e.g. <wsp:AppliesTo>) MAY be specified if the requestor desires 
a key exchange token for a specific scope. 

It is RECOMMENDED that the response carrying the key exchange token be secured 
(e.g., signed by the issuer or someone who can speak on behalf of the target for which 
the KET applies). 

Care should be taken when using this binding to prevent possible man-in-the-middle and 
substitution attacks.  For example, responses to this request SHOULD be secured using 
a token that can speak for the desired endpoint. 

The RSTR for this binding carries the <RequestedSecurityToken> element even if a 
token is returned (note that the base elements described above are included here 
italicized for completeness): 

    <wst:RequestSecurityToken> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestType>...</wst:RequestType> 

        ... 

    </wst:RequestSecurityToken> 

 

    <wst:RequestSecurityTokenResponse> 

        <wst:TokenType>...</wst:TokenType> 

        <wst:RequestedSecurityToken>...</wst:RequestedSecurityToken> 

        ... 

Page 54 of 68 



    </wst:RequestSecurityTokenResponse> 

The following example illustrates requesting a key exchange token.  In this example, the 
KET is returned encrypted for the requestor since it had the credentials available to do 
that.  Alternatively the request could be made using transport security (e.g. TLS) and 
the key could be returned directly using <wst:BinarySecret>. 

    <wst:RequestSecurityToken> 

        <wst:RequestType> 

            http://schemas.xmlsoap.org/ws/2005/02/trust/KET 

        </wst:RequestType> 

    </wst:RequestSecurityToken> 

 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xenc:EncryptedKey>...</xenc:EncryptedKey> 

        </wst:RequestedSecurityToken> 

    </wst:RequestSecurityTokenResponse> 

13. Error Handling 
There are many circumstances where an error can occur while processing security 
information.  Errors use the SOAP Fault mechanism.  Note that the reason text provided 
below is RECOMMENDED, but alternative text MAY be provided if more descriptive or 
preferred by the implementation.  The tables below are defined in terms of SOAP 1.1.  
For SOAP 1.2, the Fault/Code/Value is env:Sender (as defined in SOAP 1.2) and the 
Fault/Code/Subcode/Value is the faultcode below and the Fault/Reason/Text is the 
faultstring below.  It should be noted that profiles MAY provide second-level detail fields, 
but they should be careful not to introduce security vulnerabilities when doing so (e.g., 
by providing too detailed information). 

Error that occurred (faultstring) Fault code (faultcode) 

The request was invalid or malformed wst:InvalidRequest 

Authentication failed wst:FailedAuthentication 

The specified request failed wst:RequestFailed 

Security token has been revoked wst:InvalidSecurityToken 

Insufficient Digest Elements wst:AuthenticationBadElements 

The specified RequestSecurityToken is not 
understood. 

wst:BadRequest 

The request data is out-of-date wst:ExpiredData 

The requested time range is invalid or 
unsupported 

wst:InvalidTimeRange 

The request scope is invalid or wst:InvalidScope 

Page 55 of 68 



unsupported 

A renewable security token has expired wst:RenewNeeded 

The requested renewal failed wst:UnableToRenew 

14. Security Considerations 
As stated in the Goals section of this document, this specification is meant to provide 
extensible framework and flexible syntax, with which one could implement various 
security mechanisms. This framework and syntax by itself does not provide any 
guarantee of security. When implementing and using this framework and syntax, one 
must make every effort to ensure that the result is not vulnerable to any one of a wide 
range of attacks. 

It is not feasible to provide a comprehensive list of security considerations for such an 
extensible set of mechanisms.  A complete security analysis must be conducted on 
specific solutions based on this specification.  Below we illustrate some of the security 
concerns that often come up with protocols of this type, but we stress that this is not an 
exhaustive list of concerns. 

The following statements about signatures and signing apply to messages sent on 
unsecured channels. 

It is critical that all the security-sensitive message elements must be included in the 
scope of the message signature.  As well, the signatures for conversation authentication 
must include a timestamp, nonce, or sequence number depending on the degree of 
replay prevention required as described in [WS-Security] and the UsernameToken 
Profile.  Also, conversation establishment should include the policy so that supported 
algorithms and algorithm priorities can be validated. 

It is required that security token issuance messages be signed to prevent tampering.  If 
a public key is provided, the request should be signed by the corresponding private key 
to prove ownership.  As well, additional steps should be taken to eliminate replay 
attacks (refer to [WS-Security] for additional information).  Similarly, all token 
references should be signed to prevent any tampering. 

Security token requests are susceptible to denial-of-service attacks.  Care should be 
taken to mitigate such attacks as is warranted by the service. 

For security, tokens containing a symmetric key or a password should only be sent to 
parties who have a need to know that key or password.  

For privacy, tokens containing personal information (either in the claims, or indirectly by 
identifying who is currently communicating with whom) should only be sent according to 
the privacy policies governing these data at the respective organizations. 

For some forms of multi-message exchanges, the exchanges are susceptible to attacks 
whereby signatures are altered.  To address this, it is suggested that a signature 
confirmation mechanism be used.  In such cases, each leg should include the 
confirmation of the previous leg.  That is, leg 2 includes confirmation for leg 1, leg 3 for 
leg 2, leg 4 for leg 3, and so on.  In doing so, each side can confirm the correctness of 
the message outside of the message body. 

There are many other security concerns that one may need to consider in security 
protocols. The list above should not be used as a "check list" instead of a comprehensive 
security analysis. 

Page 56 of 68 



It should be noted that use of unsolicited RSTRs implies that the recipient is prepared to 
accept such issuances.  Recipients should ensure that such issuances are properly 
authorized and recognize their use could be used in denial-of-service attacks. 

In addition to the consideration identified here, readers should also review the security 
considerations in [WS-Security]. 

15. Acknowledgements 
This specification has been developed as a result of joint work with many individuals and 
teams, including: 

Paula Austel, IBM 
Keith Ballinger, Microsoft 
Bob Blakley, IBM 
John Brezak, Microsoft  
Tony Cowan, IBM 
Cédric Fournet, Microsoft 
Vijay Gajjala, Microsoft 
HongMei Ge, Microsoft 
Satoshi Hada, IBM 
Heather Hinton, IBM 
Slava Kavsan, RSA Security 
Scott Konersmann, Microsoft 
Leo Laferriere, Computer Associates 
Paul Leach, Microsoft  
Richard Levinson, Computer Associates 
John Linn, RSA Security 
Michael McIntosh, IBM 
Steve Millet, Microsoft 
Birgit Pfitzmann, IBM 
Fumiko Satoh, IBM 
Keith Stobie, Microsoft  
T.R. Vishwanath, Microsoft 
Richard Ward, Microsoft  
Hervey Wilson, Microsoft 

16. References  
[RFC2119] 

S. Bradner, "Key words for use in RFCs to Indicate Requirement Levels," RFC 2119, 
Harvard University, March 1997  

[RFC2246] 
IETF Standard, "The TLS Protocol," January 1999. 

[SOAP] 
W3C Note, "SOAP: Simple Object Access Protocol 1.1," 08 May 2000. 

[SOAP12]  
W3C Recommendation, "SOAP 1.2 Part 1: Messaging Framework," 24 June 2003.  

 [URI] 
T. Berners-Lee, R. Fielding, L. Masinter, "Uniform Resource Identifiers (URI): Generic 
Syntax," RFC 2396, MIT/LCS, U.C. Irvine, Xerox Corporation, August 1998. 

Page 57 of 68 

http://www.ietf.org/rfc/rfc2119.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ietf.org/rfc/rfc2396.txt


[WS-Addressing] 
"Web Services Addressing (WS-Addressing)," BEA, IBM, Microsoft, SAP, Sun 
Microsystems, Inc., August 2004. 

[WS-Federation] 
"Web Services Federation Language," BEA, IBM, Microsoft, RSA Security, VeriSign, 
July 2003. 

[WS-Policy] 
"Web Services Policy Framework," BEA, IBM, Microsoft, SAP, Sonic Software, 
Verisign, September 2004. 

 WS-PolicyAttachment] 
"Web Services Policy Attachment," BEA, IBM, Microsoft, SAP, Sonic Software, 
Verisign, September 2004. 

[WS-Security] 
OASIS,"Web Services Security: SOAP Message Security," 15 March 2004. 

[WS-SecurityPolicy] 
"Web Services Security Policy Language," IBM, Microsoft, RSA Security, VeriSign, 
December 2002. 

[XML-C14N] 
W3C Candidate Recommendation, "Canonical XML Version 1.0," 26 October 2000. 

[XML-Encrypt] 
W3C Recommendation, "XML Encryption Syntax and Processing," 10 December, 
2002. 

[XML-ns] 
W3C Recommendation, "Namespaces in XML," 14 January 1999. 

[XML-Schema1] 
W3C Recommendation, "XML Schema Part 1: Structures,"2 May 2001. 

[XML-Schema2] 
W3C Recommendation, "XML Schema Part 2: Datatypes," 2 May 2001. 

[XML-Signature] 
W3C Candidate Recommendation, "XML-Signature Syntax and Processing," 31 
October 2000. 

[X509] 
S. Santesson, et al,"Internet X.509 Public Key Infrastructure Qualified Certificates 
Profile." 

[Kerberos] 
J. Kohl and C. Neuman, "The Kerberos Network Authentication Service (V5)," RFC 
1510, September 1993. 

Appendix I – Key Exchange 
Key exchange is an integral part of token acquisition.  There are several mechanisms by 
which keys are exchanged using [WS-Security] and WS-Trust.  This section highlights 
and summarizes these mechanisms.  Other specifications and profiles may provide 
additional details on key exchange. 

Care must be taken when employing a key exchange to ensure that the mechanism does 
not provide an attacker with a means of discovering information that could only be 
discovered through use of secret information (such as a private key). 

Page 58 of 68 

http://www.w3.org/Submission/2004/SUBM-ws-addressing-20040810/
http://schemas.xmlsoap.org/ws/2003/07/secext/
http://schemas.xmlsoap.org/ws/2004/09/policy/
http://schemas.xmlsoap.org/ws/2004/09/policy/
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0
http://schemas.xmlsoap.org/ws/2002/12/secext
http://www.w3.org/TR/2000/CR-xml-c14n-20001026
http://www.w3.org/TR/2001/WD-xmlenc-core-20010626
http://www.w3.org/TR/1999/REC-xml-names-19990114
http://www.w3.org/TR/2001/REC-xmlschema-1-20010502/
http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/
http://www.w3.org/TR/2000/CR-xmldsig-core-20001031/
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-X.509-200003-I
http://www.itu.int/rec/recommendation.asp?type=items&lang=e&parent=T-REC-X.509-200003-I
http://www.ietf.org/rfc/rfc1510.txt
http://www.ietf.org/rfc/rfc1510.txt


It is therefore important that a shared secret should only be considered as trustworthy 
as its source. A shared secret communicated by means of the direct encryption scheme 
described in section I.1 is acceptable if the encryption key is provided by a completely 
trustworthy key distribution center (this is the case in the Kerberos model). Such a key 
would not be acceptable for the purposes of decrypting information from the source that 
provided it since an attacker might replay information from a prior transaction in the 
hope of learning information about it.  

In most cases the other party in a transaction is only imperfectly trustworthy. In these 
cases both parties should contribute entropy to the key exchange by means of the 
<wst:entropy> element. 

I.1 Ephemeral Encryption Keys 
The simplest form of key exchange can be found in [WS-Security] for encrypting 
message data.  As described in [WS-Security] and [XML-Encrypt], when data is 
encrypted, a temporary key can be used to perform the encryption which is, itself, then 
encrypted using the <xenc:EncryptedKey> element. 

The example below illustrates encrypting a temporary key using the public key in an 
issuer name and serial number: 

    <xenc:EncryptedKey xmlns:xenc="..."> 

        ... 

        <ds:KeyInfo xmlns:ds="..."> 

            <wsse:SecurityTokenReference xmlns:wsse="..."> 

                <ds:X509IssuerSerial> 

                    <ds:X509IssuerName> 

                        DC=ACMECorp, DC=com 

                    </ds:X509IssuerName> 

                <ds:X509SerialNumber>12345678</ds:X509SerialNumber> 

                </ds:X509IssuerSerial> 

            </wsse:SecurityTokenReference> 

        </ds:KeyInfo> 

        ... 

    </xenc:EncryptedKey> 

I.2 Requestor-Provided Keys 
When a request sends a message to an issuer to request a token, the client can provide 
proposed key material using the <wst:Entropy> element.  If the issuer doesn't 
contribute any key material, this is used as the secret (key).  This information is 
encrypted for the issuer either using <xenc:EncryptedKey> or by using a transport 
security.  If the requestor provides key material that the recipient doesn't accept, then 
the issuer should reject the request.  Note that the issuer need not return the key 
provided by the requestor. 

The following example illustrates a request for a custom security token and includes a 
secret that is to be used for the key.  In this example the entropy is encrypted for the 

Page 59 of 68 



issuer (if transport security was used for confidentiality then the <wst:Entropy> element 
would contain a <wst:BinarySecret> element): 

... 

    <wst:RequestSecurityToken> 

        <wst:TokenType> 

            http://example.org/mySpecialToken 

        </wst:TokenType> 

        <wst:RequestType> 

            http://schemas.xmlsoap.org/ws/2005/02/trust/Issue 

        </wst:RequestType> 

        <wst:Entropy> 

            <xenc:EncryptedData>...</xenc:EncryptedData> 

        </wst:Entropy> 

    </wst:RequestSecurityToken> 

... 

I.3 Issuer-Provided Keys 
If a requestor fails to provide key material, then issued proof-of-possession tokens 
contain an issuer-provided secret that is encrypted for the requestor (either using 
<xenc:EncryptedKey> or by using a transport security). 

The following example illustrates a token being returned with an associated proof-of-
possession token that is encrypted using the requestor's public key. 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xyz:CustomToken xmlns:xyz="..."> 

                ... 

            </xyz:CustomToken> 

        </wst:RequestedSecurityToken> 

        <wst:RequestedProofToken> 

            <xenc:EncryptedKey Id="newProof"> 

                ... 

            </xenc:EncryptedKey> 

        </wst:RequestedProofToken> 

    </wst:RequestSecurityTokenResponse> 

... 

Page 60 of 68 



I.4 Composite Keys 
The safest form of key exchange/generation is when both the requestor and the issuer 
contribute to the key material.  In this case, the request sends encrypted key material.  
The issuer then returns additional encrypted key material.  The actual secret (key) is 
computed using a function of the two pieces of data.  Ideally this secret is never used 
and, instead, keys derived are used for message protection. 

The following example illustrates a server, having received a request with requestor 
entropy returning its own entropy, which is used in conjunction with the requestor's to 
generate a key.  In this example the entropy is not encrypted because the transport is 
providing confidentiality (otherwise the <wst:Entropy> element would have an 
<xenc:EncryptedData> element). 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xyz:CustomToken xmlns:xyz="..."> 

                ... 

            </xyz:CustomToken> 

        </wst:RequestedSecurityToken> 

        <wst:Entropy> 

            <wst:BinarySecret>UIH...</wst:BinarySecret> 

        </wst:Entropy> 

    </wst:RequestSecurityTokenResponse> 

... 

I.5 Key Transfer and Distribution 
There are also a few mechanisms where existing keys are transferred to other parties.   

I.5.1 Direct Key Transfer 

If one party has a token and key and wishes to share this with another party, the key 
can be directly transferred.  This is accomplished by sending an RSTR (either in the body 
or header) to the other party.  The RSTR contains the token and a proof-of-possession 
token that contains the key encrypted for the recipient. 

In the following example a custom token and its associated proof-of-possession token 
are known to party A who wishes to share them with party B.  In this example, A is a 
member in a secure on-line chat session and is inviting B to join the conversation.  After 
authenticating B, A  sends B an RSTR. The RSTR contains the token and the key is 
communicated as a proof-of-possession token that is encrypted for B: 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xyz:CustomToken xmlns:xyz="..."> 

                ... 

Page 61 of 68 



            </xyz:CustomToken> 

        </wst:RequestedSecurityToken> 

        <wst:RequestedProofToken> 

            <xenc:EncryptedKey Id="newProof"> 

                ... 

            </xenc:EncryptedKey> 

        </wst:RequestedProofToken> 

    </wst:RequestSecurityTokenResponse> 

... 

I.5.2 Brokered Key Distribution 

A third party may also act as a broker to transfer keys.  For example, a requestor may 
obtain a token and proof-of-possession token from a third-party STS.  The token 
contains a key encrypted for the target service (either using the service's public key or a 
key known to the STS and target service).  The proof-of-possession token contains the 
same key encrypted for the requestor (similarly this can use public or symmetric keys). 

In the following example a custom token and its associated proof-of-possession token 
are returned from a broker B to a requestor R for access to service S.  The key for the 
session is contained within the custom token encrypted for S using either a secret 
known by B and S or using S's public key.  The same secret is encrypted for R and 
returned as the proof-of-possession token: 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xyz:CustomToken xmlns:xyz="..."> 

                ... 

                <xenc:EncryptedKey xmlns:xenc="..."> 

                    ... 

                </xenc:EncryptedKey> 

                ... 

            </xyz:CustomToken> 

        </wst:RequestedSecurityToken> 

        <wst:RequestedProofToken> 

            <xenc:EncryptedKey Id="newProof"> 

                ... 

            </xenc:EncryptedKey> 

        </wst:RequestedProofToken> 

    </wst:RequestSecurityTokenResponse> 

... 

Page 62 of 68 



I.5.3 Delegated Key Transfer 

Key transfer can also take the form of delegation.  That is, one party transfers the right 
to use a key without actually transferring the key.  In such cases, a delegation token, 
e.g. XrML, is created that identifies a set of rights and a delegation target and is secured 
by the delegating party.  That is, one key indicates that another key can use a subset 
(or all) of its rights.  The delegate can provide this token and prove itself (using its own 
key – the delegation target) to a service.  The service, assuming the trust relationships 
have been established and that the delegator has the right to delegate, can then 
authorize requests sent subject to delegation rules and trust policies. 

In this example a custom token is issued from party A to party B.  The token indicates 
that B (specifically B's key) has the right to submit purchase orders.  The token is signed 
using a secret key known to the target service T and party A (the key used to ultimately 
authorize the requests that B makes to T), and a new session key that is encrypted for 
T.  A proof-of-possession token is included that contains the session key encrypted for 
B.  As a result, B is effectively using A's key, but doesn't actually know the key. 

... 

    <wst:RequestSecurityTokenResponse> 

        <wst:RequestedSecurityToken> 

            <xyz:CustomToken xmlns:xyz="..."> 

                ... 

                <xyz:DelegateTo>B</xyz:DelegateTo> 

                <xyz:DelegateRights> 

                    SubmitPurchaseOrder 

                </xyz:DelegatedRights> 

                <xenc:EncryptedKey xmlns:xenc="..."> 

                    ... 

                </xenc:EncryptedKey> 

                <ds:Signature xmlns:ds="...">...</ds:Signature> 

                ... 

            </xyz:CustomToken> 

        </wst:RequestedSecurityToken> 

        <wst:RequestedProofToken> 

            <xenc:EncryptedKey Id="newProof"> 

                ... 

            </xenc:EncryptedKey> 

        </wst:RequestedProofToken> 

    </wst:RequestSecurityTokenResponse> 

... 

Page 63 of 68 



I.5.4 Authenticated Request/Reply Key Transfer 

In some cases the RST/RSTR mechanism is not used to transfer keys because it is part 
of a simple request/reply.  However, there may be a desire to ensure mutual 
authentication as part of the key transfer.  The mechanisms of [WS-Security] can be 
used to implement this scenario. 

Specifically, the sender wishes the following: 

• Transfer a key to a recipient that they can use to secure a reply 

• Ensure that only the recipient can see the key 

• Provide proof that the sender issued the key 

This scenario could be supported by encrypting and then signing.  This would result in 
roughly the following steps: 

1. Encrypt the message using a generated key 

2. Encrypt the key for the recipient 

3. Sign the encrypted form, any other relevant keys, and the encrypted key 

However, if there is a desire to sign prior to encryption then the following general 
process is used: 

1. Sign the appropriate message parts using a random key (or ideally a key derived 
from a random key) 

2. Encrypt the appropriate message parts using the random key (or ideally another 
key derived from the random key) 

3. Encrypt the random key for the recipient 

4. Sign just the encrypted key 

This would result in a <wsse:Security> header that looks roughly like the following: 

... 

    <wsse:Security xmlns:wsse="..." xmlns:wsu="..."  

            xmlns:ds="..." xmlns:xenc="..."> 

        <wsse:BinarySecurityToken wsu:Id="myToken" ...>  

            ... 

        </wsse:BinarySecurityToken> 

        <ds:Signature> 

            ...signature over #secret using token #myToken... 

        </ds:Signature> 

        <xenc:EncryptedKey Id="secret"> 

            ... 

        </xenc:EncryptedKey> 

        <xenc:RefrenceList> 

            ...manifest of encrypted parts using token #secret... 

        </xenc:RefrenceList> 

        <ds:Signature> 

            ...signature over key message parts using token #secret... 

Page 64 of 68 



        </ds:Signature> 

    </wsse:Security> 

... 

As well, instead of an <xenc:EncryptedKey> element, the actual token could be passed 
using <xenc:EncryptedData>.  The result might look like the following: 

... 

    <wsse:Security xmlns:wsse="..." xmlns:wsu="..."  

            xmlns:ds="..." xmlns:xenc="..."> 

        <wsse:BinarySecurityToken wsu:Id="myToken" ...>  

            ... 

        </wsse:BinarySecurityToken> 

        <ds:Signature> 

            ...signature over #secret or #Esecret using token #myToken... 

        </ds:Signature> 

        <xenc:EncryptedData Id="Esecret> 

            ...Encrypted version of a token with Id="secret"... 

        </xenc:EncryptedData> 

        <xenc:RefrenceList> 

            ...manifest of encrypted parts using token #secret... 

        </xenc:RefrenceList> 

        <ds:Signature> 

            ...signature over key message parts using token #secret... 

        </ds:Signature> 

    </wsse:Security> 

... 

I.6 Perfect Forward Secrecy 
In some situations it is desirable for a key exchange to have the property of perfect 
forward secrecy. This means that it is impossible to reconstruct the shared secret even if 
the private keys of the parties are disclosed. 

The most straightforward way to attain perfect forward secrecy when using asymmetric 
key exchange is to dispose of one's key exchange key pair periodically (or even after 
every key exchange), replacing it with a fresh one.  Of course, a freshly generated public 
key must still be authenticated (using any of the methods normally available to prove 
the identity of a public key's owner). 

The perfect forward secrecy property may be achieved by specifying a <wst:entropy> 
element that contains an <xenc:EncryptedKey> that is encrypted under a public key 
pair created for use in a single key agreement. The public key does not require 
authentication since it is only used to provide additional entropy. If the public key is 
modified, the key agreement will fail.  Care should be taken, when using this method, to 

Page 65 of 68 



ensure that the now-secret entropy exchanged via the <wst:entropy> element is not 
revealed elsewhere in the protocol (since such entropy is often assumed to be publicly 
revealed plaintext, and treated accordingly). 

Although any public key scheme might be used to achieve perfect forward secrecy (in 
either of the above methods) it is generally desirable to use an algorithm that allows 
keys to be generated quickly. The Diffie-Hellman key exchange is often used for this 
purpose since generation of a key only requires the generation of a random integer and 
calculation of a single modular exponent. 

Appendix II – WSDL 
The WSDL below does not fully capture all the possible message exchange patterns, but 
captures the typical message exchange pattern as described in this document. 

<?xml version="1.0"?> 

<wsdl:definitions  

        targetNamespace="http://schemas.xmlsoap.org/ws/2005/02/trust/wsdl" 

        xmlns:tns="http://schemas.xmlsoap.org/ws/2005/02/trust/wsdl" 

        xmlns:wst="http://schemas.xmlsoap.org/ws/2005/02/trust"  

        xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"  

        xmlns:xs="http://www.w3.org/2001/XMLSchema" 

> 

<!-- this is the WS-I BP-compliant way to import a schema --> 

    <wsdl:types> 

        <xs:schema> 

            <xs:import  

      namespace="http://schemas.xmlsoap.org/ws/2005/02/trust" 

      schemaLocation="http://schemas.xmlsoap.org/ws/2005/02/trust/ws-

trust.xsd"/> 

        </xs:schema> 

    </wsdl:types> 

 

<!-- WS-Trust defines the following GEDs --> 

    <wsdl:message name="RequestSecurityTokenMsg"> 

        <wsdl:part name="request" element="wst:RequestSecurityToken" /> 

    </wsdl:message> 

    <wsdl:message name="RequestSecurityTokenResponseMsg"> 

        <wsdl:part name="response"  

                element="wst:RequestSecurityTokenResponse" /> 

    </wsdl:message> 

    <wsdl:message name="RequestSecurityTokenResponseCollectionMsg"> 

Page 66 of 68 



        <wsdl:part name="responseCollection"  

                element="wst:RequestSecurityTokenResponseCollection"/> 

    </wsdl:message> 

 

<!-- This portType models the full request/response the Security Token 

Service: --> 

 

    <wsdl:portType name="WSSecurityRequestor"> 

        <wsdl:operation name="SecurityTokenResponse"> 

            <wsdl:input  

                    message="tns:RequestSecurityTokenResponseMsg"/> 

        </wsdl:operation> 

        <wsdl:operation name="SecurityTokenResponse2"> 

            <wsdl:input  

                message="tns:RequestSecurityTokenResponseCollectionMsg"/> 

        </wsdl:operation> 

        <wsdl:operation name="Challenge"> 

            <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/> 

            <wsdl:output message="tns:RequestSecurityTokenResponseMsg"/> 

        </wsdl:operation> 

        <wsdl:operation name="Challenge2"> 

            <wsdl:input message="tns:RequestSecurityTokenResponseMsg"/> 

            <wsdl:output  

                message="tns:RequestSecurityTokenResponseCollectionMsg"/> 

        </wsdl:operation> 

    </wsdl:portType> 

 

<!-- These portTypes model the individual message exchanges --> 

 

    <wsdl:portType name="SecurityTokenRequestService"> 

        <wsdl:operation name="RequestSecurityToken"> 

            <wsdl:input message="tns:RequestSecurityTokenMsg"/> 

        </wsdl:operation> 

    </wsdl:portType> 

 

    <wsdl:portType name="SecurityTokenService"> 

        <wsdl:operation name="RequestSecurityToken"> 

Page 67 of 68 



            <wsdl:input message="tns:RequestSecurityTokenMsg"/> 

            <wsdl:output message="tns:RequestSecurityTokenResponseMsg"/> 

        </wsdl:operation> 

        <wsdl:operation name="RequestSecurityToken2"> 

            <wsdl:input message="tns:RequestSecurityTokenMsg"/> 

            <wsdl:output  

                 message="tns:RequestSecurityTokenResponseCollectionMsg"/> 

        </wsdl:operation> 

    </wsdl:portType> 

</wsdl:definitions> 

 

Page 68 of 68 


	Web Services Trust Language (WS-Trust) 
	February 2005 
	Authors 
	Copyright Notice 
	Abstract 
	Modular Architecture  
	Status 
	Table of Contents  
	1. Overview 
	1.1 Goals and Non-Goals 
	1.2 Requirements 

	2. Notations and Terminology 
	2.1 Notational Conventions 
	2.2 Namespace 
	2.3 Schema and WSDL Files 
	2.4 Terminology 

	3. Web Services Trust Model 
	4. Models for Trust Brokering and Assessment 
	4.1 Token Acquisition 
	4.2 Out-of-Band Token Acquisition 
	4.3 Trust Bootstrap 

	5. Security Token Service Framework 
	5.1 Requesting a Security Token 
	5.2 Returning a Security Token 
	5.3 Binary Secrets 
	5.4 Composition 

	6. Issuance Binding 
	6.1 Requesting a Security Token 
	6.2 Returning a Security Token 
	6.2.1 wsp:AppliesTo in RST and RSTR 
	6.2.2 Requested References 
	6.2.3 Keys and Entropy 
	6.2.4 Returning Computed Keys 
	6.2.5 Sample Response with Encrypted Secret 
	6.2.6 Sample Response with Unencrypted Secret 
	6.2.7 Sample Response with Token Reference 
	6.2.8 Sample Response without Proof-of-Possession Token 

	6.3 Returning Multiple Security Tokens 
	6.3.1 Zero or One Proof-of-Possession Token Case 
	6.3.2 More Than One Proof-of-Possession Tokens Case 

	6.4. Returning Security Tokens in Headers 

	7. Renewal Binding 
	8. Cancel Binding 
	9. Validation Binding 
	10. Negotiation and Challenge Extensions 
	10.1 Negotiation and Challenge Framework 
	10.2 Signature Challenges 
	10.3 Binary Exchanges and Negotiations 
	10.4 Key Exchange Tokens 
	10.5 Custom Exchanges 
	10.6 Signature Challenge Example 
	10.7 Custom Exchange Example 
	10.8 Protecting Exchanges 
	10.9 Authenticating Exchanges 

	11. Key and Token Parameter Extensions 
	11.1 On-Behalf-Of Parameters 
	11.2 Key and Encryption Requirements 
	11.3 Delegation and Forwarding Requirements 
	11.4 Policies 
	11.5 Authorized Token Participants 

	12. Key Exchange Token Binding 
	13. Error Handling 
	14. Security Considerations 
	15. Acknowledgements 
	16. References  
	Appendix I – Key Exchange 
	I.1 Ephemeral Encryption Keys 
	I.2 Requestor-Provided Keys 
	I.3 Issuer-Provided Keys 
	I.4 Composite Keys 
	I.5 Key Transfer and Distribution 
	I.5.1 Direct Key Transfer 
	I.5.2 Brokered Key Distribution 
	I.5.3 Delegated Key Transfer 
	I.5.4 Authenticated Request/Reply Key Transfer 

	I.6 Perfect Forward Secrecy 

	Appendix II – WSDL 




